地热流体的腐蚀与结垢控制现状
收稿日期: 2014-10-27
修回日期: 2014-11-11
网络出版日期: 2015-02-13
基金资助
国家高技术研究发展计划项目(2012AA053001);
天津市应用基础及前沿技术研究计划重点项目(09JCZDJC24100)
A Review on Controls of Corrosion and Scaling in Geothermal Fluids
Received date: 2014-10-27
Revised date: 2014-11-11
Online published: 2015-02-13
刘明言 . 地热流体的腐蚀与结垢控制现状[J]. 新能源进展, 2015 , 3(1) : 38 -46 . DOI: 10.3969/j.issn.2095-560X.2015.01.007
Corrosion and scaling often occur in the plant equipments, pipes and fittings that contact geothermal water or vapor in the geothermal energy utilization including power generation and direct exploration. Corrosion and scaling are usually the bottleneck problems which are very difficult to overcome. Hence, mechanism and control technique researches on the corrosion and scaling of geothermal fluids are of great practical significance. Recent research developments on the control or inhibition technologies of corrosion and scaling in geothermal fluid environments were summarized in this paper. Related contents include material selections of corrosion resistance and antifouling, coating layers, fluid pretreatments and chemical additives. Further research directions were suggested. The important areas are the studies on the predictions of corrosion and scaling trends of more geothermal fluids and geochemical chemistry simulation, scaling mechanisms in geothermal fluids, combination forces between coating layers and substrates, cathodic protection and corrosion and scaling hybrid inhibition techniques, etc.
Key words: geothermal fluid; corrosion; scaling; inhibition
[1] Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future[J]. Renewable and Sustainable Energy Reviews, 2008, 12(3): 593-661.
[2] Lund J W, Freeston D H, Boyd T L. Direct utilization of geothermal energy 2010 worldwide review[J]. Geothermics, 2011, 40(3): 159-180.
[3] Pazheri F R, Othman M F, Malik N H. A review on global renewable electricity scenario[J]. Renewable and Sustainable Energy Reviews, 2014, 31(3): 835-845.
[4] 中华人民共和国科学技术部. 中国地热能利用技术及应用[R]. 科学技术部社会发展司, 北京, 2012.
[5] 国家能源局, 财政部, 国土资源部, 住房和城乡建设部. 《关于促进地热能开发利用的指导意见》(国能新能[2013]48号)[R]. 2013-1-10.
[6] Hesshaus A, Houben G, Kringel R. Halite clogging in a deep geothermal well-Geochemical and isotopic characterisation of salt origin[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2013, 64: 127-139.
[7] Wang S F, Pang Z H, Liu J R, et al. Origin and evolution characteristics of geothermal water in the niutuozhen geothermal field, North China plain[J]. Journal of Earth Science, 2013, 24(6): 891-902.
[8] Zarrouk S J, Woodhurst B C, Morris C. Silica scaling in geothermal heat exchangers and its impact on pressure drop and performance: Wairakei binary plant, New Zealand[J]. Geothermics, 2014, 51: 445-459.
[9] Gallup D L. Production engineering in geothermal technology: A review[J]. Geothermics. 2009, 38(3): 326-334.
[10] Finger J, Blankenship D. Handbook of best practices for geothermal drilling: Sandia report[R]. Sandia National Laboratories, 2010.
[11] Minissale A, Borrini D, Montegrossi G, et al. The Tianjin geothermal field (north-eastern China): Water chemistry and possible reservoir permeability reduction phenomena[J]. Geothermics, 2008, 37(4): 400-428.
[12] Atlason R S, Gunnarsson A, Unnthorsson R. Turbine repair at Nesjavellir geothermal power plant: An Icelandic case study[J]. Geothermics, 2015, 53: 166-170.
[13] Arteaga C C, Rodríguez J A, Clemente C M, et al. Estimation of useful life in turbines blades with cracks in corrosive environment[J]. Engineering Failure Analysis, 2013, 35: 576-589.
[14] 刘明言, 朱家玲. 地热能利用中的防腐防垢研究进 展[J]. 化工进展, 2011, 30(5): 1120-1123.
[15] 韦梅华, 田延山, 孙燕冬, 等. 四川省康定地区地热水结垢趋势分析[J]. 水文地质工程地质, 2012, 39(5): 132-138.
[16] 云智汉, 马致远, 周鑫, 等. 碳酸盐结垢对中低温地热流体回灌的影响——以咸阳地热田为例[J]. 地下水, 2104, 36(2): 31-33.
[17] 周伟东, 刘明言. 山西某地热水腐蚀结垢趋势实验研究[J]. 太阳能学报, 2014, 35(2): 306-310.
[18] 田涛, 陈玉林, 姚杰. 地热回灌系统水结垢预测[J]. 地下水, 2011, 33(6): 27-29.
[19] Zhang Y P, Shaw H, Farquhar R, et al. The kinetics of carbonate scaling-Application for the prediction of downhole carbonate scaling[J]. Journal of Petroleum Science and Engineering, 2001, 29(2): 85-95.
[20] Delalande M, Bergonzini L, Gherardi F, et al. Fluid geochemistry of natural manifestations from the Southern Poroto–Rungwe hydrothermal system (Tanzania): Preliminary conceptual model[J]. Journal of Volcanology and Geothermal Research, 2011, 199: 127-141.
[21] Barberi F, Carapezza M L, Cioni R, et al. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)[J]. Journal of Volcanology and Geothermal Research, 2013, 257: 113-134.
[22] 卢予北. 水源热泵开发浅层地热能回灌问题研究[J]. 水电能源科学, 2011, 29(7): 126-128.
[23] Thomas R. Titanium in the geothermal industry[J]. Geothermics, 2003, 32(4): 679-687.
[24] Robert H. Specialty metal solutions for corrosive geothermal applications[J]. Transactions-Geothermal Resources Council[J]. 2010, 34(2): 955-959.
[25] Pfennig A, Wiegand R, Wolf M, et al. Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60oC in CO2-saturated artificial geothermal brine[J]. Corrosion Science, 2013, 68: 134-143.
[26] Klapper H S, B?ßler R, Sobetzki J, et al. Corrosion resistance of different steel grades in the geothermal fluid of Molasse Basin[J]. Materials and Corrosion, 2013, 64(9): 764-71.
[27] Mundhenk N, Huttenloch P, Kohl T, et al. Metal corrosion in geothermal brine environments of the Upper Rhine graben-Laboratory and on-site studies[J]. Geothermics, 2013, 46: 14-21.
[28] Mundhenk N, Huttenloch P, Sanjuan B, et al. Corrosion and scaling as interrelated phenomena in an operating geothermal power plant[J]. Corrosion Science, 2013, 70: 17-28.
[29] Mundhenk N, Huttenloch P, Bäßler R, et al. Electrochemical study of the corrosion of different alloys exposed to deaerated 80°C geothermal brines containing CO2[J]. Corrosion Science, 2014, 84: 180-188.
[30] 陈伟, 李卫平, 刘慧丛, 等. 镀锌钢管在流动地热水环境中的腐蚀与结垢[J]. 腐蚀与防护, 2010, 31(8): 600-603.
[31] 蔡培培, 李卫平, 陈贻炽, 等. 模拟地热水中碳钢和镀锌钢管的腐蚀结垢规律[J]. 腐蚀与防护, 2009, 30(7): 454-458.
[32] 吴坤湖, 李卫平, 刘慧丛, 等. 模拟地热水环境中304不锈钢管材的结垢与腐蚀电化学行为[J]. 北京科技大学学报, 2009, 31(10): 1263-1269.
[33] 朱立群, 陈伟, 李卫平, 等. 地热水管道不锈钢管材腐蚀与结垢试验[J]. 江苏大学学报(自然科学版), 2010, 31(3): 292-295.
[34] 吴坤湖, 李卫平, 刘慧丛, 等. 模拟地热水温度对镀锌钢管腐蚀与结垢的影响[J]. 北京航空航天大学学报, 2010, 36(10): 1239-1243.
[35] 朱立群, 吴坤湖, 李卫平, 等. 模拟地热水中304不锈钢管和镀锌钢管的腐蚀与结垢[J]. 物理化学学报, 2010, 26(1): 39-46.
[36] Wu K H, Zhu L Q, Li W P, et al. Effect of Ca2+ and Mg2+ on corrosion and scaling of Galvanized steel pipe in simulated geothermal water[J]. Corrosion Science, 2010, 52(7): 2244-2249.
[37] Karlsdottir S N, Ragnarsdottir K R, Moller A, et al. On-site erosion-corrosion testing in superheated geothermal steam[J]. Geothermics, 2014, 51: 170-181.
[38] Karlsdottir S N, Ragnarsdottir K R, Thorbjornsson I O, et al. Corrosion testing in superheated geothermal steam in Iceland[J]. Geothermics, 2015, 53: 281-290.
[39] Sugama T, Butcher T, Ecker L. Experience with the development of advanced materials for geothermal systems[J]. Ceramic Transactions, 2011, 224: 389-401.
[40] Sugama T. Interfaces between geothermal brine-induced scales and SiC-filled polymer linings[J]. Geothermics, 1998, 27(4): 387-400
[41] Sugama T. Polytetrafluoroethylene-blended polyphenyl- enesulphide coatings for mitigating corrosion of steel in geothermal environments[J]. Polymers and Polymer Composites, 1998, 6(6): 373-385.
[42] Sugama T. Polyphenylenesulphide-sealed Ni-Al coatings for protecting steel from corrosion and oxidation in geothermal environments[J]. Journal of Materials Science, 1998, 33(15): 3791-3803.
[43] Gawlik K, Kelley S, Sugama T, et al. Field testing of heat exchanger tube coatings[J]. Transactions-Geothermal Resources Council, 1999, 23: 65-69.
[44] Sugama T. CVD-titanium carbonitride coatings as corrosion-preventing barriers for steel in acid-brine steam at 200oC[J]. Materials Letters, 1999, 38(3): 227-234.
[45] Sugama T, Hayenga P. Boehmite-reinforced poly(phenylene sulphide) as a wear/corrosion resistant coating[J]. Polymers and Polymer Composites, 2000, 8(5): 307-318.
[46] Sugama T, Webster R, Reams W. High-performance polymer coatings for carbon steel heat exchanger tubes in geothermal environments[J]. Journal of Materials Science, 2000, 35(9): 2145-2154.
[47] Sugama T. Antioxidants for retarding hydrothermal oxidation of polyphenylenesulfide coatings in geothermal environments[J]. Materials Letters, 2000, 43(4): 185-191.
[48] Sugama T, Gawlik K. Poly(tetrafluoroethylene)/ (hexafluoropropylene) coatings for mitigating the corrosion of steel in a simulated geothermal environment[J]. Progress in Organic Coatings, 2001, 42(3-4): 202-208.
[49] Sugama T, Kelley S S, Gawlik K. Hydrothermal degradation study of phenolic polymer coatings by advanced analytical methods[J]. Journal of Coatings Technology, 2001, 73(917): 65-71.
[50] Sugama T, Gawlik K. Carbon fibre-reinforced poly(phenylenesulphide) composite coatings[J]. Polymers and Polymer Composites, 2001, 9(6): 377-384.
[51] Sugama T, Elling D. Poly(phenylenesulfide)-based coatings for carbon steel heat exchanger tubes in geothermal environments[J]. Journal of Material Science, 2002, 37(22): 4871-4880.
[52] Sugama T, Gawlik K. Anti-silica fouling coatings in geothermal environments[J]. Materials Letters 2002, 57(3): 666-673.
[53] Gawlik K, Sugama T, Jung D. Organometallic polymer coatings for geothermal-fluid-sprayed air-cooled condensers[J]. Transactions-Geothermal Resources Council, 2002, 657-661.
[54] Gawlik K, Sugama T. Long-term field testing of polyphenylenesulphide composite coatings[J]. Transactions- Geothermal Resources Council, 2003, 27: 577-581.
[55] Sugama T, Gawlik K. Self-repairing poly (phenylenesulfide) coatings in hydrothermal environments at 200oC[J]. Materials Letters, 2003, 57(26/27): 4282-4290.
[56] Sugama T. Hydrothermal degradation of polybenzimidazole coating[J]. Materials Letters, 2004, 58(7/8): 1307-12.
[57] Sugama T, Gawlik K. Nanoscale boehmite filler for corrosion- and wear-resistant polyphenylenesulfide coatings[J]. Polymers and Polymer Composites, 2004, 12(3): 153-167.
[58] Sugama T, Hirtz P, Gawlik K. High temperature field testing of polyphenylenesulphide composite coatings[J]. Transactions-Geothermal Resources Council, 2004, 28: 567-572.
[59] Gawlik K, Sugama T, Hirtz P. Field testing and analysis of polyphenylenesulphide (PPS) composite coatings exposed to high temperature, PH-modified brine[J]. Transactions-Geothermal Resources Council, 2005, 29: 741-746.
[60] Sugama T, Gawlik K, Sullivan B. Field testing and analysis of air-cooled condenser components coated with cerium oxide-doped PAAMPS polymer nanocomposite material[J]. Transactions-Geothermal Resources Council, 2006, 30: 525-530.
[61] Sugama T. Polyphenylenesulfied/montomorillonite clay nanocomposite coatings: Their efficacy in protecting steel against corrosion[J]. Materials Letters, 2006, 60(21/22): 2700-2706.
[62] Sugama T. High-performance coating materials: final report[R]. Brookhaven National Laboratory, Washington, D.C, 2006.
[63] Sugama T. Corrosion-resistant metal surfaces: US, 7507480B2[P]. 2009-03-24.
[64] 高向东, 成桂萍, 王昭宇. A.T.O金属陶瓷涂料用于地热水管道内防护[J]. 腐蚀与防护, 2001, 22(2): 64-66.
[65] 胡驰. 地热电厂材料的防腐优化与防腐用无机釉膜的烧结工艺及性能研究[D]. 成都: 四川大学, 2006.
[66] 王海龙, 乔宁, 魏刚. 地热水管道防腐涂层的研究[J]. 北京化工大学学报(自然科学版), 2009, 36(5): 61-64.
[67] Chen N, Liu M, Zhou W D. Fouling and corrosion properties of SiO2 coatings on copper in geothermal water[J]. Industrial Engineering Chemistry Research, 2012, 51(17): 6001-6017.
[68] Buyuksagis A, Erol S. The examination of Afyonkarahisar’s geothermal system corrosion[J]. Journal of Materials Engineering and Performance, 2013, 22(2): 563-573.
[69] 中华人民共和国行业标准. CJJ138-2010, 城镇地热供热工程技术规程[S].
[70] Bandy R, Van Rooyen D. Cathodic protection in simulated geothermal environments[J]. NACE, 1984, 20-31.
[71] 李春福, 王斌, 代家林, 等. A1-Zn-In-Ga-Si牺牲阳极合金在地热水中的电化学性能研究[J]. 西南石油学院学报, 2004, 26(3): 56-58.
[72] 韩静. Q235和管道钢在天津地热水中的腐蚀性能研 究[D]. 天津: 天津大学, 2010.
[73] 聂新辉. 2010中常温低电导率水中参比电极及牺牲阳极性能研究[D]. 天津: 天津大学, 2010.
[74] Hauksson T, Markusson S, Einarsson K, et al. Pilot testing of handling the fluids from the IDDP-1 exploratory geothermal well Krafla N.E. Iceland[J]. Geothermics, 2014, 49: 76-82.
[75] Gallup D L. Brine pH modification scale control technology. 2. A review[J]. Transactions-Geothermal Resources Council, 2011, 35(1): 609-614.
[76] Amjad Z, Zuhl R W. The role of water chemistry on preventing silica fouling in industrial water systems[C]. International Corrosion Conference Series, 2010, NACE International-Corrosion 2010 Conference and Expo.
[77] Chalaev D R, Omarov M A. Methods of struggle with calcium carbonate overgrowth of geothermal heat equipment[J]. Transactions-Geothermal Resources Council, 1999, 23: 397-398.
[78] Tomaszewska B, Bodzek M. Desalination of geothermal waters using a hybrid UF-RO process. Part I: Boron removal in pilot-scale tests[J]. Desalination, 2013, 319: 99-106.
[79] Tomaszewska B, Bodzek M. Desalination of geothermal waters using a hybrid UF-RO process. Part II: Membrane scaling after pilot-scale tests[J]. Desalination, 2013, 319: 107-114.
[80] Oner S G, Kabay N, Güler E, et al. A comparative study for the removal of boron and silica from geothermal water by cross-flow flat sheet reverse osmosis method[J]. Desalination, 2011, 283: 10-15.
[81] Chou S F, Lin S C. Magnetic effects on silica fouling[J]. ASME, Heat Transfer Division, 1989, 108: 239-244.
[82] Yasuda K, Takahashi Y, Asakura Y. Effect of ultrasonication on polymerization of silicic acid in geothermal water[J]. Japanese Journal of Applied Physics, 2014, 53: 07KE08-1-3.
[83] Wang G G, Zhu L Q, Liu H C, et al. Zinc-graphite composite coating for anti-fouling application[J]. Materials Letters, 2011, 65(19/20): 3095-3097.
[84] Wang G G, Zhu L Q, Liu H C, et al. Galvanic corrosion of Ni–Cu–Al composite coating and its anti-fouling property for metal pipeline in simulated geothermal water[J]. Surface & Coatings Technology, 2012, 206: 3728-3732.
[85] 吴坤湖, 朱立群, 李卫平, 等. 地热水环境中PTFE/PPS复合涂层的阻垢特性[J]. 复合材料学报, 2010, 27(5): 47-54.
[86] 吴坤湖, 李卫平, 刘慧丛, 等. 地热水环境中PTFE/PPS复合涂层表面CaCO3垢成核行为[J]. 北京科技大学学报, 2010, 32(10): 1321-1326.
[87] 朱立群, 吴坤湖, 李卫平, 等. 循环模拟地热水环境中聚苯硫醚复合涂层的阻垢性能[J]. 功能材料, 2010, 41(6): 1046-1049.
[88] 刘慧丛, 李卫平, 王公关, 等. 一种利用模拟地热水中结垢物质诱导修复地热水金属管件内表面涂层的 方法[P]. 中国: CN101929589A. 2010-12-29.
[89] Wang G G, Zhu L Q, Liu H C. et al. Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water[J], Langmuir, 2011, 27(20): 12275-12279.
[90] Bott T R, Gudmundsson J S. The problem of fouling in the utilisation of geothermal energy[J]. International Conference on Future Energy Concepts, 1979, 65-68.
[91] Allen C A, Grimmett E S, Wagner K L. Fluidized bed heat exchangers for geothermal applications[C]. 11th Intersociety Energy Conversion Engineering Conference, 1976, 761-767.
[92] Gallup D L, Sugiaman F, Capuno V, et al. Laboratory investigation of silica removal from geothermal brines to control silica scaling and produce usable silicates[J]. Applied Geochemistry, 2003, 18(10): 1597-1612.
[93] Forster M, Bohnet M. Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling[J]. International Journal of Thermal Science, 1999, 38(11): 944-954.
[94] Santos O, Nylander T, Rosmaninho R, et al. Modified stainless steel surfaces targeted to reduce fouling-surface characterization[J]. Journal of Food Engineering, 2004, 64(1): 63-79.
[95] Zhao Q, Liu Y, Müller-Steinhagen H. Effect of surface free energy on the adhesion of biofouling and crystalline fouling[J]. Chemical Engineering Science, 2005, 60(17): 4858-4865.
[96] Rosmaninho R, Santos O, Nylander T, et al. Modified stainless steel surfaces targeted to reduce fouling- Evaluation of fouling by milk components[J]. Journal of Food Engineering, 2007, 80(4): 1176-1187.
[97] 史洪微, 刘福春, 韩恩厚, 等. 纳米SiCO2/改性丙烯酸树脂低表面能防污涂料[J]. 中国材料进展, 2014, 33(2): 95-101.
[98] Cai Y W, Liu M Y. Corrosion behavior of titania films coated by liquid-phase deposition on AISI304 stainless steel substrates[J]. AIChE Journal, 2012, 58(6): 1907-1920.
[99] Cai Y G, Liu M Y, Hui L F. CaCO3 fouling on microscale–nanoscale hydrophobic titania–fluoroalkylsilane films in pool boiling[J]. AIChE Journal, 2013, 59(7): 2662-2678.
/
〈 |
|
〉 |