磷酸铁锂电池及其新能源汽车启动电源性能研究
收稿日期: 2014-11-29
修回日期: 2014-12-11
网络出版日期: 2015-02-13
Performance Study on Lithium Iron Phosphate Battery as Starting Power for New Energy Automobile
Received date: 2014-11-29
Revised date: 2014-12-11
Online published: 2015-02-13
鉴于汽车启动电源铅酸电池存在严重环境污染隐患,本文采用环保型32650圆柱磷酸铁锂电池组装成25.6 V/65 A•h电池组代替铅酸电池应用于汽车启动电源,并分别对磷酸铁锂电池组的常温和低温启动能力、倍率性能和低温放电性能等进行测试。实验结果表明,电池组0.33 C放电容量为67.028 A•h,3 C放电容量为0.33 C放电容量的98.24%,电池组具有较好的倍率性能;电池组在 −30℃放电容量为额定容量的84.7%,具有良好的低温性能;电池组在25℃和 −20℃下以600 A电流放电,单串电池电压均高于放电保护电压;电池组在25℃搁置28 d之后,容量恢复率为99.37%;磷酸铁锂电池组性能均满足汽车启动电源性能要求,可以代替铅酸电池作为汽车启动电源。
饶睦敏 , 汪佐龙 , 陈柯宇 , 钱 龙 , 李 晶 . 磷酸铁锂电池及其新能源汽车启动电源性能研究[J]. 新能源进展, 2015 , 3(1) : 70 -74 . DOI: 10.3969/j.issn.2095-560X.2015.01.011
In view of the serious environmental pollution of lead-acid battery of Starting Power for New Energy Automobile, a 25.6 V/65 A•h lithium iron phosphate battery pack was assembled with 32650 type of cylindrical lithium iron phosphate cell to replace the lead-acid battery for starting power for new energy automobile. The room temperature and low-temperature starting capability, rate capability and low-temperature discharge performance were investigated. The battery pack provided a capacity of 67.03 A•h at 0.33 C and retained 98.24% capacity at 3 C. The battery pack obtained 84.7% of capacity at −30oC. The voltage of every single battery was higher than the discharge protection voltage when the battery pack was discharged at 600 A under 25oC and −20oC, respectively. The battery pack retained 99.37% of capacity after storage at 25oC for 28 days. All these data can meet the requirements of the starting power, indicating that the lithium iron phosphate battery pack can replace the lead-acid battery as starting power for new energy automobile.
[1] 刘春娜. 铅酸蓄电池期待新机遇[J]. 电源技术, 2012, 4(36): 456-457.
[2] Zou X P, Kang Z X, Shu D, et al. Effects of carbon additives on the performance of negative electrode of lead-carbon battery[J]. Electrochimica Acta, 2015, 151(1): 89-98.
[3] Jin Z F, Zhang Z J, Zhang H, et al. Assessment of lead bioaccessibility in soils around lead battery plants in East China[J]. Chemosphere, 2015, 119(1): 1247-1254.
[4] Hong B, Jiang L X, Xue H T, et al. Characterization of nano-lead-doped active carbon and its application in lead-acid battery[J]. Journal of Power Sources, 2014, 270(12): 332-341.
[5] Moncada A, Piazza S, Sunseri C, et al. Recent improvements in PbO2 nanowire electrodes for lead-acid battery[J]. Journal of Power Sources, 2015, 275(1): 181-188.
[6] Mamun A, Wang D, Narayanan I, et al. Physics-based simulation of the impact of demand response on lead-acid emergency power availability in a datacenter[J]. Journal of Power Sources, 2015, 275(1): 516-524.
[7] Tian X, Gong Y, Wu Y F, et al. Management of used lead acid battery in China: Secondary lead industry progress, policies and problems[J]. Resources, Conservation and Recycling, 2014, 93(12): 75-84.
[8] 李伟善. 储能锂离子电池关键材料研究进展[J]. 新能源进展, 2013, 1(1): 95-105.
[9] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[10] Prosini P P, Cento C, Pozio A. Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4[J]. Journal of Solid State Electrochemistry, 2014, 18(3): 795-804.
[11] Qiu Y J, Geng Y H, Yu J, et al. High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning[J]. Journal of Materials Science, 2014, 49(2): 504-509.
[12] Vu A, Stein A. Lithium iron phosphate spheres as cathode materials for high power lithium ion batteries[J]. Journal of Power Sources, 2014, 245(1): 48-58.
[13] 杜江, 张正富, 彭金辉, 等. 动力锂离子电池正极材料磷酸铁锂的研究进展[J]. 新能源进展, 2013, 1(3): 263-268.
[14] GB/T 5008.1-2013, 起动用铅酸蓄电池[S].
[15] GB/T 5008.2-2013, 起动用铅酸蓄电池[S].
/
〈 |
|
〉 |