欢迎访问《新能源进展》官方网站!今天是
论文

增设通风孔的风冷式锂离子电池热管理系统数值研究

  • 张新强 ,
  • 洪思慧 ,
  • 汪双凤
展开
  • 华南理工大学,传热强化与过程节能教育部重点实验室,广州 510640
张新强(1989-),男,硕士,主要从事风冷式电池热管理系统研究。

收稿日期: 2015-10-13

  修回日期: 2015-11-16

  网络出版日期: 2015-12-30

基金资助

科技部国际合作项目(2013DFG60080)

Numerical Investigation of Air-cooled Cylindrical Lithium-ion Battery Thermal Management System with Vent

  • ZHANG Xin-qiang ,
  • HONG Si-hui ,
  • WANG Shuang-feng
Expand
  • Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China

Received date: 2015-10-13

  Revised date: 2015-11-16

  Online published: 2015-12-30

摘要

电池热管理系统的优化设计可以维持动力电池的高效性能,进而促进电动汽车产业的发展。本文采用CFD方法研究有通风孔的情况下,风冷式锂离子电池组在放电过程中的散热性能。研究结果发现,在电池组外壳增设通风孔可以明显提高整个电池组的冷却效果。风孔开设在主出风口的相反方向时,电池组的温升和温差最小。当风孔的面积与出口面积相等时,电池组的冷却效果最佳;继续增大风孔对电池组的冷却效果影响较小。最后探讨了空气进口温度和电池间冷却通道的变化对电池组散热效果的影响。采用在电池组外壳上开设多个通风孔的办法有助于电池热管理系统的冷却优化设计。

本文引用格式

张新强 , 洪思慧 , 汪双凤 . 增设通风孔的风冷式锂离子电池热管理系统数值研究[J]. 新能源进展, 2015 , 3(6) : 422 -428 . DOI: 10.3969/j.issn.2095-560X.2015.06.003

Abstract

The optimum design of battery thermal management system helps maintaining the high efficient performance of power battery, which will contribute to the development of the electric vehicle industry. In this research, a CFD model for an air-cooled battery pack with vent is developed to investigate the thermal performance of battery during discharging. It’s found that the additional vent can significantly improve the cooling performance of the entire battery pack. Temperature rise and temperature difference of the battery pack reach the lowest when the vent is opened at the opposite of the outlet. Moreover, the best cooling performance is achieved as the area of the vent equals to that of the outlet. However, continuously increasing the area of the vent makes little difference on improving the cooling performance. The effects of the inlet air temperature and the volume of the cooling channel on the thermal performance of lithium-ion battery pack are also investigated. Opening multiple vents in the battery pack enable to the optimum design on the cooling capability of the battery thermal management system.

参考文献

[1] RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4551-4571.

[2] CHACKO S, CHUNG Y M. Thermal modeling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213(9): 296-303.

[3] PARK H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 239: 30-36.

[4] 吴忠庆, 张国庆. 混合动力车用镍氢电池的液体冷却系统[J]. 广东工业大学学报, 2008, 25(4): 28-31.

[5] ZHAO R, GU J J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of Power Sources, 2015, 273: 1089-1097.

[6] RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management, 2013, 65(1): 92-97.

[7] KIZILE R, SABBAN R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2): 1105-1112.

[8] DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International J. Heat and Mass Transfer, 2010, 53(23): 5176-5182.

[9] JATTETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196(23): 10359-10368.

[10] HUO Y T, RAO Z H, ZHAO J. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395.

[11] ZHU C, LI X H, SONG L J, et al. Development of a theoretically based thermal model for lithium ion battery pack[J]. Journal of Power Sources, 2013, 223(1): 155-164.

[12] ZHANG Z Q, JIA L, ZHAO N, et al. Thermal Modeling and Cooling Analysis of High-power Lithium-ion cells[J]. Journal of Thermal Sciences, 2011, 6(6): 570-575.

[13] LI X S, HE F, MA L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J]. Journal of Power Sources, 2013, 238(28): 395-402.

[14] HE F, LI X S, MA L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International J. Heat and Mass Transfer, 2014, 72(3): 622-629.

[15] MAHAMUD R, PACK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13): 5685-5696.

[16] FAN L W, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238(28): 301-312.

[17] WANG T, TSENT K J, ZHAO J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134(C): 229-238.

[18] CHEN S C, WANG C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124.

[19] SAW L H, YE Y, TAY A A O. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles[J]. Applied Energy, 2014, 131(9): 97-107.

[20] KHAN W A, CULHAM J R, YOVANOVICH M M.   Convection heat transfer from tube banks in crossflow: Analytical approach[J]. International J. Heat and Mass Transfer, 2006, 49(25): 4831-4838.

[21] ZUKAUSKAS A, ULINSKAS R. Heat Transfer in Tube Banks in Cross flow[M]. Springer-Verlag, New York, 1988.

文章导航

/