欢迎访问《新能源进展》官方网站!今天是
论文

地热驱动氨水吸收式动力/制冷复合循环参数优化分析

  • 王云山 ,
  • 华君叶 ,
  • 李 贵 ,
  • 邵英澍
展开
  • 1. 南京师范大学,能源与机械工程学院,江苏省能源系统过程转化与减排技术工程实验室,南京 210042;
    2. 江苏省地矿地热能有限公司,南京 211100
王云山(1993-),男,硕士研究生,主要从事制冷与低温工程研究。

收稿日期: 2016-09-18

  修回日期: 2016-10-25

  网络出版日期: 2016-12-28

基金资助

江苏省高校自然科学研究面上项目(16KJB47008);
江苏省自然科学基金面上研究项目(BK20151549)

Optimization and Analysis of Ammonia-Water Absorption Power/Cooling Integrated Cycle with Geothermal Energy

  • WANG Yun-shan ,
  • HUA Jun-ye ,
  • LI Gui ,
  • SHAO Ying-shu
Expand
  • 1. Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China;                                                                 
    2. Jiangsu Geology Geothermal Energy Co., Ltd., Nanjing 211100, China

Received date: 2016-09-18

  Revised date: 2016-10-25

  Online published: 2016-12-28

摘要

针对中低品位地热驱动的氨水吸收式动力/制冷复合循环的热力学性能展开分析与优化,在Kalina循环的基础上利用氨水变温蒸发的特性,将正向动力子过程与逆向制冷子过程耦合,对外实现动力与冷量的联供。本文对影响复合循环热力性能的工质对浓度xw/xb、氨水发生温度(露点温度)t14、循环倍率K以及分流比n四个重要参数展开了分析优化。研究表明,在xw/xb=0.50/0.32、t14=180℃、K=2.80和n=0.505的优化工况下,复合循环的热效率和?效率分别可达19.38%和59.77%,较氨水动力循环分别高出3.71%和4.74%,较水蒸气朗肯循环分别高出8.54%和35.81%。

本文引用格式

王云山 , 华君叶 , 李 贵 , 邵英澍 . 地热驱动氨水吸收式动力/制冷复合循环参数优化分析[J]. 新能源进展, 2016 , 4(6) : 455 -461 . DOI: 10.3969/j.issn.2095-560X.2016.06.005

Abstract

Analysis and optimization on thermodynamic performance of the ammonia-water absorption power/cooling integrated cycle driven by mid- or low-grade geothermal energy were conducted in this study. Based on the Kalina cycle, by applying the evaporation characteristic of ammonia-water, the forward power sub-process was combined with the reverse refrigeration sub-process, which realized the hybrid generation of power and cooling capacity simultaneously. Four main parameters were analyzed on their effect on the thermal performance of the integrated cycle, including the working fluid concentration xw/xb, ammonia dew-point temperature t14, circulation ratio K, and chilling fraction n. The result showed that under the optimal condition, (xw/xb=0.50/0.32, t14=180℃, K=2.80 and n=0.505), the thermal efficiency of the integrated cycle could reach up to 19.38%, which is 3.71% higher than that of ammonia-water power cycle and 8.54% than that of Rankine cycle, repectively. Besides, the integrated cycle presented much higher exergy efficiency of 59.77% comparing with the other two cycles.

参考文献

[1] 陈世玉, 华君叶, 陈亚平, 等. 用于余热回收的三压力氨水动力循环的热力性能[J]. 东南大学学报(自然科学版), 2012, 42(4): 659-663. DOI:10.3969/j.issn.1001- 0505.2012.04.016.

[2] ZARE V, MAHMOUDI S M S, YARI M. Ammonia- water cogeneration cycle for utilizing waste heat from the GT-MHR plant[J]. Applied thermal engineering, 2012, 48: 176-185. DOI: 10.1016/j.applthermaleng.2012. 05.009.

[3] NASRUDDIN, USVIKA R, RIFALDI M, et al. Energy and exergy analysis of Kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation[J]. Journal of mechanical science and technology, 2009, 23(7): 1871-1876. DOI: 10.1007/s12206-009-0617-8.

[4] 黄惠兰, 陈强, 李刚. 低品位能源发电系统研究进展[J]. 热力发电, 2015, 44(8): 8-13. DOI:10.3969/j.issn. 1002-3364.2015.08.008.

[5] HUA J Y, CHEN Y P, WANG Y D, et al. Thermodynamic analysis of ammonia–water power/chilling cogeneration cycle with low-grade waste heat[J]. Applied thermal engineering, 2014, 64(1/2): 483-490. DOI: 10.1016/ j.applthermaleng.2013.12.043.

[6] 张颖, 何茂刚, 贾真, 等. Kalina循环的热力学第一定律分析[J]. 动力工程, 2007, 27(2): 218-222. DOI: 10.3321/j.issn:1000-6761.2007.02.015.

[7] CHEN Y PG, GUO Z W, WU J F, et al. Energy and exergy analysis of integrated system of ammonia-water Kalina-Rankine cycle[J]. Energy, 2015, 90: 2028-2037. DOI: 10.1016/j.energy.2015.07.038.

[8] 陈小砖, 柳建华, 张良, 等. 氨水吸收式制冷系统及关键设备的研究综述[J]. 低温与超导, 2013, 41(6): 47-51. DOI:10.3969/j.issn.1001-7100.2013.06.011.

[9] 鲍帅阳, 杜凯, 储云霄, 等. 高/低压区氨水吸收/压缩复合制冷循环性能分析[J]. 制冷技术, 2014, 34(3): 42-48. DOI:10.3969/j.issn.2095-4468.2014.03.205.

[10] ZAMFIRESCU C, DINCER I. Thermodynamic analysis of a novel ammonia-water trilateral Rankine cycle[J]. Thermochimica acta, 2008, 477(1-2): 7-15. DOI: 10.1016/ j.tca.2008.08.002.

[11] LU S G, GOSWAMI D Y. Optimization of a novel combined power/refrigeration thermodynamic cycle[J]. Journal of solar energy engineering, 2003, 125(2): 212-217. DOI:10.1115/1.1562950.

[12] PADILLA R V, DEMIRKAYA G, GOSWAMI D Y, et al. Analysis of power and cooling cogeneration using ammonia-water mixture[J]. Energy, 2010, 35(12): 4649- 4657. DOI: 10.1016/j.energy.2010.09.042.

[13] KALINA A I. Combined-cycle system with novel bottoming cycle[J]. Journal of engineering for gas turbines and power, 1984, 106(4): 737-742. DOI:10.1115/1.3239632.

[14] 郑丹星, 陈斌, 齐云, 等. 新型氨吸收式动力/制冷复合循环的热力学分析[J]. 工程热物理学报, 2002, 23(5): 539-542. DOI:10.3321/j.issn:0253-231X.2002.05.003.

[15] 刘猛, 张娜, 蔡睿贤. 氨吸收式串联型动力/制冷复合循环[J]. 工程热物理学报, 2006, 27(1): 9-12. DOI: 10.3321/j.issn:0253-231X.2006.01.003.

[16] 罗尘丁, 张娜, 蔡睿贤, 等. 氨吸收式动力/制冷复合循环的敏感性分析[J]. 中国电机工程学报, 2008, 28(17): 1-7. DOI:10.3321/j.issn:0258-8013.2008.17.001.

文章导航

/