欢迎访问《新能源进展》官方网站!今天是
论文

染料敏化太阳能电池中准固态聚合物电解质的研究进展

  • 方悦韵 ,
  • 黄启章 ,
  • 朱艳青 ,
  • 沈成家 ,
  • 王雷雷 ,
  • 史继富 ,
  • 徐 刚
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;                            
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049;                    
    5. 中国科学技术大学,合肥 230026
方悦韵(1993-),女,硕士研究生,主要从事染料敏化太阳能电池准固态电解质的研究与开发。

收稿日期: 2016-09-26

  修回日期: 2016-10-31

  网络出版日期: 2016-12-28

基金资助

国家自然科学基金(21673243,51506205);
广东省科技计划项目(2014A010106018,2013A011401011);
粤港联合创新项目(2014B050505015);
广东省特支计划项目(2014TQ01N610);
太阳能光热先端材料工程技术中心项目(2014B090904071)

Research Progress on Quasi-Solid State Polymer Electrolytes for Dye-Sensitized Solar Cell

  • FANG Yue-yun ,
  • HUANG Qi-zhang ,
  • ZHU Yan-qing ,
  • SHEN Cheng-jia ,
  • WANG Lei-lei ,
  • SHI Ji-fu ,
  • XU Gang
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. University of Science and Technology of China, Hefei 230026, China

Received date: 2016-09-26

  Revised date: 2016-10-31

  Online published: 2016-12-28

摘要

染料敏化太阳能电池(DSSC)制备工艺简单、制造成本低廉且转换效率高,是太阳能电池的重要发展方向,具有广泛的应用前景。目前,基于液态电解质的DSSC的光电转换效率最高已达到13%,但液态电解质封装困难、长期稳定性差等问题阻碍了其实际应用。近些年来,固态和准固态电解质引起了研究学者们的广泛关注。其中准固态聚合物电解质因具有较高的离子电导率、良好的电池界面接触和可加工性能,成为制备高性能DSSC的重要研究方向之一。根据特征、形成机制和电解质的物理状态,可将准固态聚合物电解质分为四大类:准固态热塑性聚合物电解质,准固态热固性聚合物电解质,准固态复合型聚合物电解质和准固态离子型聚合物电解质。本文分析了基于这几类准固态聚合物电解质的DSSC的性能参数,并对其存在的问题和未来的研究方向进行了探讨。

本文引用格式

方悦韵 , 黄启章 , 朱艳青 , 沈成家 , 王雷雷 , 史继富 , 徐 刚 . 染料敏化太阳能电池中准固态聚合物电解质的研究进展[J]. 新能源进展, 2016 , 4(6) : 475 -485 . DOI: 10.3969/j.issn.2095-560X.2016.06.008

Abstract

Dye-sensitized solar cells (DSSCs) have triggered great research interests and have a broad application future due to their easy fabrication, low cost and relatively high power conversion efficiency. Although the highest efficiency of 13% for DSSCs has been attained by using liquid electrolytes nowadays, their sealing difficulty and long-term instability are the main obstacles in the path of their practical application. Therefore, in recent years, solid and quasi-solid state electrolytes have been widely investigated to improve the stability of DSSCs. Among them, quasi-solid state polymer electrolytes possess the advantages of high ionic conductivity, favorable battery contact interface, and convenient processing, and thus become an important research direction of DSSCs. In addition, according to the characters, formation mechanism and physical states, quasi-solid state polymer electrolytes can be divided into four species including quasi-solid state thermoplastic polymer electrolytes (QS-TPPE), quasi-solid state thermosetting polymer electrolytes (QS-TSPE), quasi-solid state composite polymer electrolytes (QS-CPE) and quasi-solid state ionic liquid polymer electrolytes (QS-ILPE). In this paper, the performances of DSSCs based on different kinds of quasi-solid state polymer electrolytes are analyzed in detail, while their drawbacks and development prospects are also reviewed.

参考文献

[1] O’REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740. DOI: 10.1038/353737a0.

[2] MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature chemistry, 2014, 6(3): 242-247. DOI: 10.1038/nchem.1861.

[3] 孙旭辉, 包塔娜, 张凌云, 等. 染料敏化太阳能电池的研究进展[J]. 化工进展, 2012, 31(1): 47-52. DOI: 10.16085/j.issn.1000-6613.2012.01.003.

[4] 林琳, 林建明, 康世杰, 等. 染料敏化太阳能电池中电解质的研究进展[J]. 材料导报, 2007, 21(IX): 292-294, 298.

[5] 王惟嘉, 杨英, 郭学益, 等. 准固态聚合物电解质在染料敏化太阳能电池中的应用[J]. 化学通报, 2011, 74(2): 144-149. DOI: 10.14159/j.cnki.0441-3776.2011.02.013.

[6] WU J H, LAN Z, LIN J M, et al. Electrolytes in dye-sensitized solar cells[J]. Chemical reviews, 2015, 115(5): 2136-2173. DOI: 10.1021/cr400675m.

[7] 陈炜, 孙晓丹, 李恒德, 等. 染料敏化太阳能电池的研究进展[J]. 世界科技研究与发展, 2004, 26(5): 27-35. DOI: 10.16507/j.issn.1006-6055.2004.05.006.

[8] 刘雨欣, 唐宏哲. 染料敏化太阳能电池研究进展[J]. 现代制造技术与装备, 2015(5): 27-30. DOI: 10.16107/j.cnki.mmte.2015.0274.

[9] NOGUEIRA A F, LONGO C, DE PAOLI M-A. Polymers in dye sensitized solar cells: overview and perspectives[J]. Coordination chemistry reviews, 2004, 248(13/14): 1455-1468. DOI: 10.1016/j.ccr.2004.05.018.

[10] WU J H, LAN Z, HAO S C, et al. Progress on the electrolytes for dye-sensitized solar cells[J]. Pure and applied chemistry, 2008, 80(11): 2241-2258. DOI: 10.1351/pac200880112241.

[11] WU J H, HAO S C, LAN Z, et al. A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells[J]. Advanced functional materials, 2007, 17(15): 2645-2652. DOI: 10.1002/adfm.200600621.

[12] SONG D, CHO W, LEE J H, et al. Toward higher energy conversion efficiency for solid polymer electrolyte dye-sensitized solar cells: ionic conductivity and TiO2 pore-filling[J]. The journal of physical chemistry letters, 2014, 5(7): 1249-1258. DOI: 10.1021/jz5002727.

[13] CAO F, OSKAM G, SEARSON P C. A solid state, dye sensitized photoelectrochemical cell[J]. The journal of physical chemistry, 1995, 99(47): 17071-17073. DOI: 10.1021/j100047a003.

[14] SHI Y T, ZHAN C, WANG L D, et al. The electrically conductive function of high-molecular weight poly(ethylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells[J]. Physical chemistry chemical physics, 2009, 11(21): 4230-4235. DOI:10.1039/B901003C.

[15] LEE K S, JUN Y, PARK J H. Controlled dissolution of polystyrene nanobeads: transition from liquid electrolyte to gel electrolyte[J]. Nano letters, 2012, 12(5): 2233-2237. DOI: 10.1021/nl204287w.

[16] SEO S-J, YUN S-H, WOO J-J, et al. Preparation and characterization of quasi-solid-state electrolytes using a brominated poly(2,6-dimethyl-1,4-phenylene oxide) electrospun nanofiber mat for dye-sensitized solar cells[J]. Electrochemistry communications, 2011, 13(12): 1391-1394. DOI: 10.1016/j.elecom.2011.08.018.

[17] Chapin D M, Fuller C S, Pearson G L. A new silicon P-N junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5): 676-677. DOI:10.1063/1.1721711.

[18] LISKA P, VLACHOPOULOS N, NAZEERUDDIN M K, et al. cis-Diaquabis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) sensitizes wide band gap oxide semi- conductors very efficiently over a broad spectral range in the visible[J]. Journal of the american chemical society, 1988, 110(11): 3686-3687. DOI: 10.1021/ja00219a068.

[19] WU J H, LAN Z, LIN J M, et al. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells[J]. Advanced materials, 2007, 19(22): 4006-4011. DOI: 10.1002/adma.200602886.

[20] KANG M-S, AHN K-S, LEE J-W. Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes[J]. Journal of power sources, 2008, 180(2): 896-901. DOI: 10.1016/j.jpowsour.2008. 02.087.

[21] LAN Z, WU J H, HAO S C, et al. Template-free synthesis of closed-microporous hybrid and its application in quasi-solid-state dye-sensitized solar cells[J]. Energy & environmental science, 2009, 2(5): 524-528. DOI: 10.1039/B821908G.

[22] MATSUMOTO M, WADA Y, KITAMURA T, et al. Fabrication of solid-state dye-sensitized TiO2 solar cell using polymer electrolyte[J]. Bulletin of the chemical society of Japan, 2001, 74(2): 387-393. DOI: 10.1246/ bcsj.74.387.

[23] KATO T, OKAZAKI A, HAYASE S. Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells[J]. Chemical communications, 2005(3): 363-365. DOI: 10.1039/b412462f.

[24] MIKOSHIBA S, MURAI S, SUMINO H, et al. Anomalous increase in photocurrent density for quasi-solid dye sensitized solar cells by addition of Tetra(bromomethyl)benzene[J]. Chemistry letters, 2002, 31(9): 918-919. DOI: 10.1246/cl.2002.918.

[25] MIKOSHIBA S, MURAI S, SUMINO H, et al. Ionic liquid type dye-sensitized solar cells: increases in photovoltaic performances by adding a small amount of water[J]. Current applied physics, 2005, 5(2): 152-158. DOI: 10.1016/j.cap.2004.06.023.

[26] MURAI S, MIKOSHIBA S, SUMINO H, et al. Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel: How to make gels with a small amount of gelator[J]. Journal of photochemistry and photobiology A: chemistry, 2002, 148(1/3): 33-39. DOI: 10.1016/S1010-6030(02) 00046-1.

[27] MURAI S, MIKOSHIBA S, SUMINO H, et al. Quasi-solid dye sensitised solar cells filled with phase-separated chemically cross-linked ionic gels[J]. Chemical communications, 2003(13): 1534-1535. DOI: 10.1039/b302793g.

[28] SAKAGUCHI S, UEKI H, KATO T, et al. Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators: Control of TiO2/gel electrolytes and counter Pt/gel electrolytes interfaces[J]. Journal of photochemistry and photobiology A: chemistry, 2004, 164(1/3): 117-122. DOI: 10.1016/j.jphotochem.2003.11.014.

[29] SHIBATA Y, KATO T, KADO T, et al. Quasi-solid dye sensitised solar cells filled with ionic liquid—increase in efficiencies by specific interaction between conductive polymers and gelators[J]. Chemical communications, 2003(21): 2730-2731. DOI: 10.1039/b305368g.

[30] PARVEZ M K, IN I, PARK J M, et al. Long-term stable dye-sensitized solar cells based on UV photo- crosslinkable poly(ethylene glycol) and poly(ethylene glycol) diacrylate based electrolytes[J]. Solar energy materials and solar cells, 2011, 95(1): 318-322. DOI: 10.1016/j.solmat.2010.04.018.

[31] BELLA F, BONGIOVANNI R. Photoinduced polymerization: an innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells[J]. Journal of photochemistry and photobiology C: photochemistry reviews, 2013, 16: 1-21. DOI: 10.1016/j.jphotochemrev. 2013.03.002.

[32] KOMIYA R, HAN L, YAMANAKA R, et al. Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte[J]. Journal of photochemistry and photobiology A: chemistry, 2004, 164(1/3): 123-127. DOI: 10.1016/j.jphotochem.2003.11.015.

[33] WANG L, FANG S B, LIN Y, et al. A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors[J]. Chemical communications, 2005(45): 5687-5689. DOI: 10.1039/ b510335e.

[34] LAN Z, WU J H, LIN J M, et al. Quasi-solid-state dye-sensitized solar cells with a novel efficient absorbent for liquid electrolyte based on PAA–PEG hybrid[J]. Journal of power sources, 2007, 164(2): 921-925. DOI: 10.1016/j.jpowsour.2006.11.011.

[35] LAN Z, WU J H, LIN J M, et al. Quasi-solid-state dye-sensitized solar cells containing P(MMA-co-AN)- based polymeric gel electrolyte[J]. Polymers for advanced technologies, 2011, 22(12): 1812-1815. DOI: 10.1002/pat.1675.

[36] LAN Z, WU J H, LIN J M, et al. Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells[J]. Electrochimica acta, 2007, 52(24): 6673-6678. DOI: 10.1016/j.electacta.2007.04.076.

[37] LI P, WU J H, HAO S C, et al. Quasi-solid state dye-sensitized solar cells based on the cross-linked poly(ethylene glycol) electrolyte with tetraethoxysilane[J]. Journal of applied polymer science, 2011, 120(3): 1752-1757. DOI:10.1002/app.33369.

[38] LI P J, WU J H, HUANG M L, et al. The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature[J]. Electrochimica acta, 2007, 53(2): 903-908. DOI: 10.1016/j.electacta.2007.07.068.

[39] TANG Z Y, LIU Q, TANG Q W, et al. Preparation of PAA-g-CTAB/PANI polymer based gel-electrolyte and the application in quasi-solid-state dye-sensitized solar cells[J]. Electrochimica acta, 2011, 58: 52-57. DOI: 10.1016/j.electacta.2011.08.074.

[40] TANG Z Y, WU J H, LI Q H, et al. The preparation of poly(glycidyl acrylate)–polypyrrole gel-electrolyte and its application in dye-sensitized solar cells[J]. Electrochimica acta, 2010, 55(17): 4883-4888. DOI: 10.1016/j.electacta. 2010.03.081.

[41] TANG Z Y, WU J H, LIU Q, et al. Preparation of poly(acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells[J]. Journal of power sources, 2012, 203: 282-287. DOI: 10.1016/j.jpowsour.2011.11.039.

[42] WU J H, LAN Z, WANG D B, et al. Quasi-solid state  dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)–poly(ethylene glycol) composite[J]. Journal of photochemistry and photobiology A: chemistry, 2006, 181(2/3): 333-337. DOI:10.1016/j.jphotochem. 2005.12.015.

[43] ZHOU Y, LIN G, SHIH A J, et al. Assembly pressure and membrane swelling in PEM fuel cells[J]. Journal of power sources, 2009, 192(2): 544-551. DOI: 10.1016/ j.jpowsour.2009.01.085.

[44] 梁桂杰, 钟志成, 许杰, 等. 基于新型交联聚合物电解质的准固态染料敏化太阳能电池[J]. 物理化学学报, 2012, 28(12): 2852-2860. DOI: 10.3866/PKU.WHXB 201210091.

[45] YANG H S, ILPERUMA OA, SHIMOMURA M, et al. Effect of ultra-thin polymer membrane electrolytes on dye-sensitized solar cells[J]. Solar energy materials and solar cells, 2009, 93(6/7): 1083-1086. DOI: 10.1016/ j.solmat.2008.12.019.

[46] DONG R-X, SHEN S-Y, CHEN H-W, et al. A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells[J]. Journal of materials chemistry A, 2013, 1(29): 8471-8478. DOI: 10.1039/c3ta11331k.

[47] PARK S-H, LIM J, KWON Y S, et al. Tunable nanoporous network polymer nanocomposites having size-selective ion transfer for dye-sensitized solar cells[J]. Advanced energy materials, 2013, 3(2): 184-192. DOI: 10.1002/aenm.201200437.

[48] PARK S-H, LIM J, SONG I Y, et al. Stable dye- sensitized solar cells by encapsulation of N719-sensitized TiO2 electrodes using surface-induced cross-linking polymerization[J]. Advanced energy materials, 2012, 2(2): 219-224. DOI: 10.1002/aenm.201100533.

[49] PARK S-H, SONG IY, LIM J, et al. A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte[J]. Energy & environmental science, 2013, 6(5): 1559-1564. DOI: 10.1039/c3ee24496b.

[50] DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: Present, past and future[J]. Electrochimica acta, 2011, 57: 4-13. DOI: 10.1016/j.electacta.2011.08.048.

[51] LI B, WANG L D, KANG B N, et al. Review of recent progress in solid-state dye-sensitized solar cells[J]. Solar energy materials and solar cells, 2006, 90(5): 549-573. DOI: 10.1016/j.solmat.2005.04.039.

[52] CHEN C-L, TENG H S, LEE Y-L. In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells[J]. Advanced materials, 2011, 23(36): 4199-4204. DOI: 10.1002/adma.201101448.

[53] CHEN J N, XIA J B, FAN K, et al. A novel CuI-based   iodine-free gel electrolyte for dye-sensitized solar cells[J]. Electrochimica acta, 2011, 56(16): 5554-5560. DOI: 10.1016/j.electacta.2011.03.109.

[54] KAWANO R, WATANABE M. Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid[J]. Chemical communications, 2003(3): 330-331. DOI: 10.1039/b208388b.

[55] KIM J H, KANG M S, KIM Y J, et al. Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles[J]. Chemical communications, 2004(14): 1662-1663. DOI: 10.1039/b405215c.

[56] LEE C-P, CHEN P-Y, VITTAL R, et al. Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black[J]. Journal of materials chemistry, 2010, 20(12): 2356-2361. DOI: 10.1039/b922350a.

[57] LIM S J, CHOI Y J, SONG K S, et al. Quasi-solid-state dye-sensitized solar cells assembled by in-situ chemical cross-linking at ambient temperature[J]. Electrochemistry communications, 2011, 13(11): 1284-1287. DOI: 10.1016/j.elecom.2011.08.020.

[58] USUI H, MATSUI H, TANABE N, et al. Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes[J]. Journal of photochemistry and photobiology A: chemistry, 2004, 164(1/3): 97-101. DOI: 10.1016/j.jphotochem.2003.12.020.

[59] WANG H X, LI H, XUE B F, et al. Solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells[J]. Journal of the American chemical society, 2005, 127(17): 6394-6401. DOI: 10.1021/ja043268p.

[60] BERGINC M, HO?EVAR M, KRAŠOVEC U O, et al. Ionic liquid-based electrolyte solidified with SiO2 nanoparticles for dye-sensitized solar cells[J]. Thin solid films, 2008, 516(14): 4645-4650. DOI: 10.1016/j.tsf. 2007.06.079.

[61] HUO Z P, DAI S Y, WANG K J, et al. Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3-/I- redox couple for quasi-solid-state dye-sensitized solar cells[J]. Solar energy materials and solar cells, 2007, 91(20): 1959-1965. DOI: 10.1016/ j.solmat.2007.08.003.

[62] KUBO W, KITAMURA T, HANABUSA K, et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator[J]. Chemical communications, 2002(4): 374-375. DOI: 10.1039/b110019j.

[63] STATHATOS E, LIANOS P, ZAKEERUDDIN S M, et al. A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid[J]. Chemistry of materials, 2003, 15(9): 1825-1829. DOI: 10.1021/cm0213568.

[64] CLEMENTE A, PANERO S, SPILA E, et al. Solid-state, polymer-based, redox capacitors[J]. Solid state ionics, 1996, 85(1/4): 273-277. DOI: 10.1016/0167-2738(96) 00070-7.

[65] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. DOI: 10.1038/28818.

[66] CROCE F, PERSI L, RONCI F, et al. Nanocomposite polymer electrolytes and their impact on the lithium battery technology[J]. Solid State Ionics, 2000, 135(1/4): 47-52. DOI: 10.1016/s0167-2738(00)00329-5.

[67] KATSAROS G, STERGIOPOULOS T, ARABATZIS I M, et al. A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells[J]. Journal of photochemistry and photobiology A: chemistry, 2002, 149(1/3): 191-198. DOI: 10.1016/s1010-6030(02)00027-8.

[68] STERGIOPOULOS T, ARABATZIS I M, KATSAROS G, et al. Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells[J]. Nano letters, 2002, 2(11): 1259-1261. DOI: 10.1021/nl025798u.

[69] AN H L, XUE B F, LI D M, et al. Environmentally friendly LiI/ethanol based gel electrolyte for dye- sensitized solar cells[J]. Electrochemistry communications, 2006, 8(1): 170-172. DOI: 10.1016/j.elecom.2005.11.012.

[70] LI D M, QIN D, DENG M H, et al. Optimization the solid-state electrolytes for dye-sensitized solar cells[J]. Energy & environmental science, 2009, 2(3): 283-291. DOI: 10.1039/b813378f.

[71] XUE B F, WANG H X, HU Y S, et al. An alternative ionic liquid based electrolyte for dye-sensitized solar cells[J]. Photochemical & photobiological sciences, 2004, 3(10): 918-919. DOI: 10.1039/b412647e.

[72] ZHANG X, YANG H, XIONG H-M, et al. A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte[J]. Journal of power sources, 2006, 160(2): 1451-1455. DOI: 10.1016/j.jpowsour.2006.03.008.

[73] GENG Y, SUN X, CAI Q, et al. Gel electrolytes containing several kinds of particles used in quasi-solid- state dye-sensitized solar cells[J]. Rare metals, 2006, 25(6): 201-206. DOI:10.1016/s1001-0521(07)60074-6.

[74] WANG X, DENG R, KULKARNI S A, et al. Investigation of the role of anions in hydrotalcite for quasi-solid state dye-sensitized solar cells application[J]. Journal of materials chemistry A, 2013, 1(13): 4345-4351. DOI: 10.1039/c3ta01581e.

[75] WANG X, KULKARNI S A, ITO B I, et al. Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: an investigation of charge transport and shift in the TiO2 conduction band[J]. ACS applied materials & interfaces, 2013, 5(2): 444-450. DOI: 10.1021/am3025454.

[76] 秦达, 郭晓枝, 孙惠成, 等. 染料敏化太阳能电池固态电解质[J]. 化学进展, 2011, 23(2/3): 557-568.

[77] WANG P, ZAKEERUDDIN S M, EXNAR I, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte[J]. Chemical communications, 2002(24): 2972-2973. DOI: 10.1039/b209322g.

[78] LI Q H, TANG Q W, DU N, et al. Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells[J]. Journal of power sources, 2014, 248: 816-821. DOI: 10.1016/j. jpowsour.2013.10.027.

[79] CHANG L-Y, LEE C-P, LI C-T, et al. Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells[J]. Journal of materials chemistry A, 2014, 2(48): 20814-20822. DOI: 10.1039/c4ta05436a.

[80] 史彦涛, 孙晓丹, 翁端, 等. 准固态电解质在染料敏化太阳能电池中的应用[J]. 世界科技研究与发展, 2006, 28(3): 45-50, 19. DOI: 10.16507/j.issn.1006-6055.2006. 03.009.

[81] 陈就斌, 徐雪青, 史继富, 等. 准固态电解质在染料敏化太阳电池中的应用和发展[J]. 新能源进展, 2013, 1(2): 137-144. DOI: 10.3969/j.issn.2095-560X.2013.02.003.

[82] 胡滨, 刘国军, 胡志强, 等. 染料敏化太阳能电池中凝胶电解质的研究进展[J]. 现代化工, 2008, 28(1): 31-34. DOI: 10.16606/j.cnki.issn0253-4320.2008.01.022.

[83] 周娴, 潘华锦, 张莉, 等. 高分子聚合物在太阳能电池电解质中的应用[J]. 现代化工, 2010, 30(3): 31-34, 36. DOI: 10.16606/j.cnki.issn0253-4320.2010.03.019.

[84] 崔艳峥. 染料敏化太阳能电池准固态聚合物电解质研究[D]. 宁波: 宁波大学, 2013.

文章导航

/