欢迎访问《新能源进展》官方网站!今天是
论文

磷化工副产物磷铁制备锂电池正极材料LiFePO4的研究

  • 郭和一 ,
  • 闫康平 ,
  • 吴鹏程 ,
  • 王贵欣
展开
  • 四川大学化学工程学院,成都 610065
郭和一(1988-),男,硕士研究生,主要从事电化学与新能源材料研究。

收稿日期: 2014-03-14

  修回日期: 2014-04-28

  网络出版日期: 2014-04-30

Study on Preparing Cathode Material LiFePO4 of Lithium Batteries Using Ferrophosphorus Byproducts from Phosphorus Chemical Engineering

  • GUO He-yi ,
  • YAN Kang-ping ,
  • WU Peng-cheng ,
  • WANG Gui-xin
Expand
  • College of Chemical Engineering, Sichuan University, Chengdu 610065, China

Received date: 2014-03-14

  Revised date: 2014-04-28

  Online published: 2014-04-30

摘要

本文从废物利用和可持续发展的角度出发,成功利用磷化工副产物磷铁制备了储能锂电池正极材料LiFePO4。从原料磷铁的粒度和碳包覆量两个方面对制备的LiFePO4性能进行了探究,磷铁粒度越小,制备的LiFePO4综合性能越好。当碳包覆量为6.5wt% 时,在0.1 C、0.2 C、0.5 C、1 C、2 C和5 C的倍率下,4000目磷铁制备的样品放电容量分别为153、150、143、130、115和103 mA•h/g,和传统昂贵原料制备的对应材料性能相当,表明利用磷铁制备能源材料具有良好的发展前景。

本文引用格式

郭和一 , 闫康平 , 吴鹏程 , 王贵欣 . 磷化工副产物磷铁制备锂电池正极材料LiFePO4的研究[J]. 新能源进展, 2014 , 2(2) : 141 -145 . DOI: 10.3969/j.issn.2095-560X.2014.02.010

Abstract

In this paper, based on the principles of waste recovery and sustainable development, cathode material LiFePO4 of power lithium batteries was successfully prepared with ferrophosphorus by-products from phosphorus chemical engineering. The effects of the size of ferrophosphorus and carbon content on the performance of the as-synthesized LiFePO4 were investigated. The properties of LiFePO4 prepared with smaller particle size are better. When the carbon content is 6.5wt%, the discharge capacities of the sample prepared with 4000 mesh ferrophosphorus are 153, 143, 130, 115 and 103 mA•h/g at different current rates of 0.1, 0.2, 0.5, 1, 2, and 5 C, respectively, which is comparable to that of the corresponding materials prepared using traditional expensive raw materials and demonstrates good prospects to prepare power material using ferrophosphorus.

参考文献

[1] 陈善继. 黄磷副产物磷铁的综合利用[J]. 磷肥与复肥, 2010, 25(6): 62-64.

[2] Wang Z, Jiang M, Ning P. Thermodynamic Modeling and Gaseous Pollution Prediction of the Yellow Phosphorus Production[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194-12202.

[3] 李伟善. 储能锂离子电池关键材料研究进展[J]. 新能源进展, 2013, 1(1): 95-105.

[4] 杜江, 张正富, 彭金辉, 等. 动力锂离子电池正极材料磷酸铁锂的研究进展[J]. 新能源进展, 2013, 1(3): 263-268.

[5] Ellis B L, Lee K T, Nazar L F. Positive Electrode Materials for Li-Ion and Li-Batteries[J]. Chem. Mat., 2010, 22(3): 691-714.

[6] Fergus J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(4): 939-954.

[7] Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chem. Mat., 2010, 22(3): 587-603.

[8] Li J, Daniel C, Wood D. Materials processing for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(5): 2452-2460.

[9] Ritchie A, Howard W. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 809-812.

[10] Wang Y, Cao G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries[J]. Advanced Materials, 2008, 20(12): 2251-2269.

[11] Xu B, Qian D, Wang Z, et al. Recent progress in cathode materials research for advanced lithium ion batteries[J]. Materials Science and Engineering: R: Reports, 2012, 73(5): 51-65.

[12] Chen C, Liu G B, Wang Y, et al. Preparation and electrochemical properties of LiFePO4/C nanocomposite using FePO4•H2O nanoparticles by introduction of Fe3(PO4) 2•8H2O at low cost[J]. Electrochimica Acta, 2013, 113(1): 464-469.

[13] Jiang Z Q, Jiang Z J. Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source[J]. J. Alloy. Compd., 2012, 537(1): 308-317.

[14] Liu X M, Yan P, Xie Y Y, et al. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach[J]. Chem. Commun., 2013, 49(47): 5396-5398.

[15] Wang T, Yin Y, Liu H W. Synthesis of FePO4 from Fe2O3 and Its Application in Synthesizing Cathode Material LiFePO4[J]. J. Inorg. Mater., 2013, 28(2): 207-211.

[16] Zhang D, Cai R, Zhou Y K, et al. Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment[J]. Electrochimica Acta, 2010, 55(8): 2653-2661.

[17] 刘睿, 王贵欣, 闫康平, 等. 由黄磷副产物磷铁合成球形LiFePO4[J]. 合成化学, 2010, 18(5): 639-641.

[18] 陈妙, 王贵欣, 闫康平, 等. 磷铁和碳酸锂配比对LiFePO4晶体结构和性能的影响[J]. 高校化学工程学报, 2012, 26(3): 1-5.

[19] 郭和一, 王贵欣, 李成佳, 等. 利用磷铁制备能源材料的研究进展[J]. 磷肥与复肥, 2012, 27(6): 14-16.

[20] Sun W, Luo C, Wang G, et al. Enhanced performance of Fe1.5P anode materials by SnO2/Sn modification for lithium-ion batteries[J]. J. Alloy. Compd., 2012, 535(1): 114-119.

[21] Wang G, Liu R, Chen M, et al. A novel synthesis of spherical LiFePO4/C composite using Fe1.5P and mixed lithium salts via oxygen permeation[J]. Korean Journal Of Chemical Engineering, 2012, 29(8): 1094-1101.

[22] Kosova N, Devyatkina E, Kaichev V. Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition[J]. Journal of Power Sources, 2007, 174(2): 735-740.

[23] Safronov D V, Novikova S A, Skundin A M, et al. Lithium intercalation and deintercalation processes in Li4Ti5O12 and LiFePO4[J]. Inorg. Mater., 2012, 48(1): 57-61.

[24] Chang H H, Chang C C, Wu H C, et al. Study on dynamics of structural transformation during charge/ discharge of LiFePO4 cathode[J]. Electrochemistry Communications, 2008, 10(2): 335-339.

[25] Gaberscek M, Dominko R, Jamnik J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes[J]. Electrochemistry Communications, 2007, 9(12): 2778-2783.

[26] Kang H, Wang G, Guo H, et al. Facile Synthesis and Electrochemical Performance of LiFePO4/C Composites Using Fe–P Waste Slag[J]. Industrial & Engineering Chemistry Research, 2012, 51(23): 7923-7931.

文章导航

/