Welcome to visit Advances in New and Renewable Energy!

Preparation of Ni-Catalyst and Its Application in Hydrogenation of Xylose into Xylitol

  • CHEN Pei-li ,
  • ZHANG Shao-hong ,
  • SU Qiu-cheng
Expand
  • Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2017-06-20

  Revised date: 2017-07-24

  Online published: 2017-08-30

Abstract

Catalysts of Ni4.63Cu1Al1.82Fe0.79, Ni4.65Cu1Co0.92Al1.96Fe0.74 and Ni4.59Cu1Mg1.58Al1.96Fe0.70 were prepared by a co-precipitation method with active sites of nickel as hydrotalcite precursor. The hydrogenation of xylose into xylitol by the catalysts was carried out under hydrogen atmosphere, and the products were determined by HPLC. The properties of the catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, and H2-TPR. The potential relationship between the surface properties of the catalysts and their catalytic activity was investigated. With the doping of Co and Mg, the surface area, adsorption capacity, and hydrogen consumption of the catalysts increased, while the reduction temperature decreased. The catalytic activity of Ni4.65Cu1Co0.92Al1.96Fe0.74 and Ni4.59Cu1Mg1.58Al1.96Fe0.70 was higher than Ni4.63Cu1Al1.82Fe0.79, the conversion rate of xylose increased from 90.5% to 95% and 95.7% respectively.

Cite this article

CHEN Pei-li , ZHANG Shao-hong , SU Qiu-cheng . Preparation of Ni-Catalyst and Its Application in Hydrogenation of Xylose into Xylitol[J]. Advances in New and Renewable Energy, 2017 , 5(4) : 294 -299 . DOI: 10.3969/j.issn.2095-560X.2017.04.009

References

[1] 徐俊, 郑建仙, 葛亚中. 木糖醇的发酵法生产[J]. 中国食品添加剂, 2003(5): 44-49. DOI: 10.3969/j.issn.1006- 2513.2003.05.012.
[2] 陈亚申. 介绍一种烟草制品添加剂—木糖醇[J]. 烟草科技, 1986(4): 60-61. DOI: 10.16135/j.issn1002-0861. 1986.04.024.
[3] 木糖醇硬脂酸酯通过鉴定[J]. 精细化工信息, 1986(9): 34.
[4] 尤新. 生物质替代石化产品的发展动向(一)[J]. 产业市场, 2008, 16(5): 9-11. DOI: 10.3969/j.issn.1008-1100. 2008.05.002.
[5] 尤新. 生物质替代石化产品的发展动向(二)[J]. 产业市场, 2008, 16(6): 15-17.
[6] 成英, 闫书磊, 明立雪. 木糖醇的生产工艺及应用研究进展[J]. 甘肃石油和化工, 2008(3): 18-21, 43.
[7] ARAÚJO D, FREITAS F, SEVRIN C, et al. Co-production of chitin-glucan complex and xylitol by Komagataella pastoris using glucose and xylose mixtures as carbon source[J]. Carbohydrate polymers, 2017, 166: 24-30. DOI: 10.1016/j.carbpol.2017.02.088.
[8] CHUN B W, DAIR B, MACUCH P J, et al. The development of cement and concrete additive[J]. Applied biochemistry and biotechnology, 2006, 131(1/3): 645-658. DOI: 10.1385/ABAB:131:1:645.
[9] BUCHERT J, VIIKARI L, LINKO M, et al. Production of xylonic acid by pseudomonas fragi[J]. Biotechnology letters, 1986, 8(8): 541-546. DOI: 10.1007/BF01028079.
[10] 江志东, 吴平东. 木糖Raney-Ni催化加氢本征反应动力学[J]. 化学工程, 1998, 26(6): 23-26.
[11] 江志东, 陈瑞芳, 王金渠. 木糖Raney-Ni催化加氢宏观动力学研究[J]. 化学反应工程与工艺, 1997, 13(3): 244-250.
[12] FAN X G, LI M H, ZHANG J K, et al. Optimization of SO2-catalyzed hydrolysis of corncob for xylose and xylitol production[J]. Journal of chemical technology & biotechnology, 2014, 89(11): 1720-1726. DOI: 10.1002/jctb.4250.
[13] 徐三魁, 王向宇, 梁丽珍. 葡萄糖加氢催化剂研究现状及发展趋势[J]. 日用化学工业, 2007, 37(1): 42-45. DOI: 10.3969/j.issn.1001-1803.2007.01.012.
[14] AKIRA T, TADASHI K, TAKASHI S, et al. An improved asymmetrically-modified nickel catalyst prepared from ultrasonicated Raney nickel[J]. Bulletin of the chemical society of Japan, 1994, 67(9): 2473-2477. DOI: 10.1246/bcsj.67.2473.
[15] HOFFER B W, CREZEE E, MOOIJMAN P R M, et al. Carbon supported Ru catalysts as promising alternative for Raney–type Ni in the selective hydrogenation of D–glucose[J]. Catalysis today, 2003, 79-80: 35-41. DOI: 10.1016/S0920-5861(03)00040-3.
[16] CAVANI F, TRIFIRÒ F, VACCARI A. Hydrotalcite?type anionic clays: preparation, properties and applications[J]. Catalysis today, 1991, 11(2): 173?301. DOI: 10.1016/0920-5861(91)80068-K.
[17] 郭军, 孙铁, 沈剑平, 等. 硅钨系列三元杂多阴离子柱撑水滑石的合成、表征及其酸碱催化性能[J]. 高等学校化学学报, 1995, 16(3): 346-350.
[18] CHOUDARY B M, KANTAM M L, RAHMAN A, et al. Selective reduction of aldehydes to alcohols by calcined Ni–Al hydrotalcite[J]. Journal of molecular catalysis a: chemical, 2003, 206(1/2): 145-151. DOI: 10.1016/S1381-1169(03)00413-8.
[19] VELU S, SWAMY C S. Alkylation of phenol with 1–propanol and 2–propanol over catalysts derived from hydrotalcite-like anionic clays[J]. Catalysis letters, 1996, 40(3/4): 265-272. DOI: 10.1007/BF00815294.
[20] CRUZ I O, RIBEIRO N F P, ARANDA D A G, et al. Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors[J]. Catalysis communications, 2008, 9(15): 2606-2611. DOI: 10.1016/j.catcom.2008.07.031.
[21] VELU S, RAMASWAMY V, RAMANI A, et al. New hydrotalcite–like anionic clays containing Zr4+ in the layers[J]. Chemical communications, 1997, 21: 2107-2108.
[22] RAO G R, MISHRA B G, SAHU H R. Synthesis of CuO, Cu and CuNi alloy particles by solution combustion using carbohydrazide and N-tertiarybutoxy-carbonylpiperazine fuels[J]. Materials letters, 2004, 58(27/28): 3523-3527. DOI: 10.1016/j.matlet.2004.05.082.
[23] WU S P. Preparation of ultra fine nickel-copper bimetallic powder for BME-MLCC[J]. Microelectronics journal, 2007, 38(1): 41-46. DOI: 10.1016/j.mejo.2006.09.013.
[24] WU S P, NI J, JIAO L, et al. Preparation of ultra-fine copper-nickel bimetallic powders with hydrothermal- reduction method[J]. Materials chemistry and physics, 2007, 105(1): 71-75. DOI: 10.1016/j.matchemphys.2007. 04.027.
[25] YANG H Q, LIU Q, LI Z C, et al. Controllable synthesis of aluminosilica monoliths with hierarchical pore structure and their catalytic performance[J]. Microporous and mesoporous materials, 2010, 127(3): 213-218. DOI: 10.1016/j.micromeso.2009.07.016.
[26] LOWELL S, SHIELDS J E, THOMAS M A, et al. Characterization of porous solids and powders: surface area, pore size and density[M]. Netherlands: Springer, 2004. DOI: 10.1007/978-1-4020-2303-3.
[27] ZHANG Y H, XING G X, SHENG S S, et al. Interaction of NiO with gamma-Al2O3 supporter of NiO/gamma- Al2O3 catalysts[J]. Acta physico-chimica sinica, 1999, 15(8): 735-741. DOI: 10.3866/PKU.WHXB19990813.
[28] CARRERO A, CALLES J A, VIZCAÍNO A J. Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation[J]. Applied catalysis a: general, 2007, 327(1): 82-94. DOI: 10.1016/j.apcata.2007.04.030.
Outlines

/