殷志刚, 王静, 曹敏花. 层状富镍过渡金属氧化物正极材料衰减机理研究进展[J]. 新能源进展, 2020,8(3): 216-226
YIN Zhi-gang, WANG Jing, CAO Min-hua. Research Progress on the Degradation Mechanism of Layered Nickel-Rich Transition Metal Oxides Cathode Materials[J]. ADV NEW RENEWABLE EN, 2020,8(3): 216-226.
Research Progress on the Degradation Mechanism of Layered Nickel-Rich Transition Metal Oxides Cathode Materials
YIN Zhi-gang1,2, WANG Jing1, CAO Min-hua2
1. Beijing Idrive Automotive Co, Ltd, Beijing 102202, China
2. Beijing Institute of Technology, Beijing 100081, China
Abstract
Owing to advantages of high specific capacity, low cost and environmental friendliness, nickel-rich layered transition metal oxides cathode materials have attracted much attention and have been extensively applied in products over decade years. However, its inherent defects, such as poor structural stability in the cycle process, rapid decay at high temperature cycle, low conductivity and poor storage performance, greatly limit its wide application in various fields. In the paper, capacity degradation mechanism of nickel-rich layered transition metal oxides cathode materials, during cycling, was summarized. The improvement methods were proposed for different capacity degradation mechanisms.
图2 富镍正极材料不同电压下200次循环后XRD变化[30]:(1)原始正极片XRD; (2)4.5 V上限截止电压正极片XRD; (3)4.5 V上限截止电压且包含浮充过程正极片XRD; (4)4.7 V上限截止电压正极片XRDFig. 2 XRD patterns change of nickel-rich cathode material under different voltages after 200 cycles[30]
图11 NCM811材料原始粉末(a)和600次循环后(b)的电镜图[110]Fig. 11 Cross-sectional STEM images for NCM811 material before cycling (bare) (a) and after 600 cycles (b) at 45℃[110]
YOON CS, RYU HH, PARK GT, et al. Extracting maximum capacity from Ni-rich Li[Ni0. 95Co0. 025Mn0. 025]O2 cathodes for high-energy-density lithium-ion batteries[J]. Journal of materials chemistry A, 2018, 6(9): 4126-4132. DOI: 10.1039/c7ta11346c. [本文引用:1]
LIU TC, LIN LP, BI XX, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature nanotechnology, 2019, 14(1): 50-56. DOI: 10.1038/s41565-018-0284-y. [本文引用:1]
[5]
GUO DL, YANG MK, ZHANG LL, et al. Cr2O3 nanosheet/carbon cloth anode with strong interaction and fast charge transfer for pseudocapacitive energy storage in lithium-ion batteries[J]. RSC advances, 2019, 9(57): 33446-33453. DOI: 10.1039/c9ra07465a. [本文引用:1]
[6]
YANG CY, CHENJ, JIX, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250. DOI: 10.1038/s41586-019-1175-6. [本文引用:1]
[7]
SUID, XU LQ, ZHANG HT, et al. A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries[J]. Carbon, 2020, 157: 656-662. DOI: 10.1016/j.carbon.2019.10.106. [本文引用:1]
SHIY, WANJ, LI JY, et al. Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries[J]. Nano energy, 2019, 61: 304-310. DOI: 10.1016/j.nanoen.2019.04.074. [本文引用:1]
[11]
MA YT, LIU PF, XIE QS, et al. Double-shell Li-rich layered oxide hollow microspheres with sand wich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode[J]. Nano energy, 2019, 59: 184-196. DOI: 10.1016/j.nanoen.2019.02.040. [本文引用:1]
[12]
YANG JL, XIAOX, GONG WB, et al. Size- independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-ion batteries[J]. Angewand te chemie international edition, 2019, 58(26): 8740-8745. DOI: 10.1002/anie.201902478. [本文引用:1]
[13]
CUSENZA MA, BOBBAS, ARDENTEF, et al. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles[J]. Journal of cleaner production, 2019, 215: 634-649. DOI: 10.1016/j.jclepro.2019.01.056. [本文引用:1]
[14]
CICCONIP, LANDID, GERMANIM. Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV[J]. Applied energy, 2017, 192: 159-177. DOI: 10.1016/j.apenergy.2017.02.008. [本文引用:1]
CANO ZP, BANHAMD, YE SY, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature energy, 2018, 3(4): 279-289. DOI: 10.1038/s41560-018-0108-1. [本文引用:1]
LIU GL, LI ML, WU NT, et al. Single-crystalline particles: an effective way to ameliorate the intragranular cracking, thermal stability, and capacity fading of the LiNi0. 6Co0. 2Mn0. 2O2 electrodes[J]. Journal of the electrochemical society, 2018, 165(13): A3040-A3047. DOI: 10.1149/2.0491813jes. [本文引用:1]
[22]
WU NT, WUH, KIM JK, et al. Restoration of degraded nickel-rich cathode materials for long-Life lithium-ion batteries[J]. ChemElectroChem, 2018, 5(1): 78-83. DOI: 10.1002/celc.201700979. [本文引用:1]
[23]
CHENF, YUANJ, ZHENG CJ, et al. A highly- integrated and efficient commercial distributed EV battery balancing system[J]. IEICE electronics express, 2018: 15(8): 20180005. DOI: 10.1587/elex.15.20180005. [本文引用:1]
[24]
LI WD, ASL HY, XIEQ, et al. Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American chemical society, 2019, 141(13): 5097-5101. DOI: 10.1021/jacs.8b13798. [本文引用:1]
YOON CS, PARK KJ, KIM UH, et al. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles[J]. Chemistry of materials, 2017, 29(24): 10436-10445. DOI: 10.1021/acs.chemmater.7b04047. [本文引用:1]
[27]
XIAY, ZHENG JM, WANG CM, et al. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano energy, 2018, 49: 434-452. DOI: 10.1016/j.nanoen.2018.04.062. [本文引用:1]
[28]
YANG HP, WU HH, GE MY, et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Advanced functional materials, 2019, 29(13): 1808825. DOI: 10.1002/adfm.201808825. [本文引用:1]
[29]
KONDRAKOV AO, GEßWEINH, GALDINAK, et al. Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation[J]. The journal of physical chemistry C, 2017, 121(44): 24381-24388. DOI: 10.1021/acs.jpcc.7b06598. [本文引用:1]
[30]
ZHANG SS. Understand ing of performance degradation of LiNi0. 80Co0. 10Mn0. 10O2 cathode material operating at high potentials[J]. Journal of energy chemistry, 2020, 41: 135-141. DOI: 10.1016/j.jechem.2019.05.013. [本文引用:2]
[31]
DINGY, MU DB, WU BR, et al. Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles[J]. Applied energy, 2017, 195: 586-599. DOI: 10.1016/j.apenergy.2017.03.074. [本文引用:1]
[32]
KIM UH, KUO LY, KAGHAZCHIP, et al. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries[J]. ACS energy letters, 2019, 4(2): 576-582. DOI: 10.1021/acsenergylett.8b02499. [本文引用:1]
[33]
WUF, LIUN, CHENL, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano energy, 2019, 59: 50-57. DOI: 10.1016/j.nanoen.2019.02.027. [本文引用:1]
LIH, ZHOU PF, LIU FM, et al. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries[J]. Chemical science, 2019, 10(5): 1374-1379. DOI: 10.1039/c8sc03385d. [本文引用:1]
[36]
SUSAI FA, KOVACHEVAD, CHAKRABORTYA, et al. Improving performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: theoretical and experimental studies[J]. ACS applied energy materials, 2019, 2(6): 4521-4534. DOI: 10.1021/acsaem.9b00767. [本文引用:1]
[37]
WEIGELT, SCHIPPERF, ERICKSON EM, et al. Structural and electrochemical aspects of LiNi0. 8Co0. 1Mn0. 1O2 cathode materials doped by various cations[J]. ACS energy letters, 2019, 4(2): 508-516. DOI: 10.1021/acsenergylett.8b02302. [本文引用:2]
[38]
ZHANG XD, SHI JL, LIANG JY, et al. Suppressing surface lattice oxygen release of Li‐rich cathode materials via heterostructured spinel Li4Mn5O12 coating[J]. Advanced materials, 2018, 30(29): 1801751. DOI: 10.1002/adma.201801751. [本文引用:1]
[39]
KOU LJ, CAO LY, HUANG JF, et al. Facile Synthesis of reduced graphene oxide/NH4V3O8 with high capacity as a cathode material for lithium ion batteries[J]. Micro & Nano letters, 2017, 12(12): 940-943. DOI: 10.1049/mnl.2017.0107. [本文引用:1]
[40]
CHEN ZH, QINY, AMINEK, et al. Role of surface coating on cathode materials for lithium-ion batteries[J]. Journal of materials chemistry, 2010, 20(36): 7606-7612. DOI: 10.1039/C0JM00154F. [本文引用:1]
[41]
KALLURIS, YOONM, JOM, et al. Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries[J]. Advanced materials, 2017, 29(48): 1605807. DOI: 10.1002/adma.201605807. [本文引用:1]
[42]
XIONG DJ, ELLIS LD, NELSON KJ, et al. Rapid impedance growth and gas production at the Li-ion cell positive electrode in the absence of a negative electrode[J]. Journal of the electrochemical society, 2016, 163(14): A3069-A3077. DOI: 10.1149/2.1031614jes. [本文引用:1]
LUOK, ROBERTS MR, HAOR, et al. Charge- compensation in 3 d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature chemistry, 2016, 8(7): 684-691. DOI: 10.1038/NCHEM.2471. [本文引用:1]
[45]
FLORESE, VONRÜTIN, NOVÁKP, et al. Elucidation of LixNi0. 8Co0. 15Al0. 05O2 redox chemistry by operand o Raman spectroscopy[J]. Chemistry of materials, 2018, 30(14): 4694-4703. DOI: 10.1021/acs.chemmater.8b01384. [本文引用:1]
JUNGR, METZGERM, MAGLIAF, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries[J]. Journal of the electrochemical society, 2017, 164(7): A1361-A1377. DOI: 10.1149/2.0021707jes. [本文引用:1]
[48]
DIXITM, MARKOVSKYB, SCHIPPERF, et al. Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials[J]. The journal of physical chemistry C, 2017, 121(41): 22628-22636. DOI: 10.1021/acs.jpcc.7b06122. [本文引用:1]
[49]
YABUUCHIN, MAKIMURAY, OHZUKUT. Solid-state chemistry and electrochemistry of LiCo1∕3Ni1∕3Mn1∕3O2 for advanced lithium-ion batteries III. rechargeable capacity and cycleability[J]. Journal of the electrochemical society, 2007, 154(4): A314-A321. DOI: 10.1149/1.2455585. [本文引用:1]
[50]
HATSUKADET, SCHIELEA, HARTMANNP, et al. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes[J]. ACS applied materials & interfaces, 2018, 10(45): 38892-38899. DOI: 10.1021/acsami.8b13158. [本文引用:1]
[51]
WANDTJ, FREIBERGA T S, OGRODNIKA, et al. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries[J]. Materials today, 2018, 21(8): 825-833. DOI: 10.1016/j.mattod.2018.03.037. [本文引用:1]
[52]
ZHANG SS. Insight into the gassing problem of Li-ion battery[J]. Frontiers in energy research, 2014, 2: 59. DOI: 10.3389/fenrg.2014.00059. [本文引用:1]
[53]
WUK, LIQ, DANG RB, et al. A novel synthesis strategy to improve cycle stability of LiNi0. 8Mn0. 1Co0. 1O2 at high cut-off voltages through core-shell structuring[J]. Nano research, 2019, 12(10): 2460-2467. DOI: 10.1007/s12274-019-2469-6. [本文引用:1]
[54]
LONGO RC, LIANG CP, KONG FT, et al. Core-shell nanocomposites for improving the structural stability of Li-rich layered oxide cathode materials for Li-ion batteries[J]. ACS applied materials & interfaces, 2018, 10(22): 19226-19234. DOI: 10.1021/acsami.8b03898. [本文引用:1]
[55]
SHIN JW, SON JT. Core-shell-structured Li[Ni0. 87Co0. 08Al0. 05]O2 cathode material for enhanced electrochemical performance and thermal stability of lithium-ion batteries[J]. Journal of the Korean physical society, 2019, 74(1): 53-56. DOI: 10.3938/jkps.74.53. [本文引用:1]
[56]
DONG XY, YAO JY, ZHU WC, et al. Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells[J]. Journal of materials chemistry A, 2019, 7(35): 20262-20273. DOI: 10.1039/C9TA07147D. [本文引用:1]
[57]
YANG PH, LI HL, WEIX, et al. Structure tuned Li1. 2Mn0. 6Ni0. 2O2 with low cation mixing and Ni segregation as high performance cathode materials for Li-ion batteries[J]. Electrochimica acta, 2018, 271: 276-283. DOI: 10.1016/j.electacta.2018.01.104. [本文引用:1]
[58]
SHI JL, XIAO DD, ZHANG XD, et al. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries[J]. Nano research, 2017, 10(12): 4201-4209. DOI: 10.1007/s12274-017-1489-3. [本文引用:1]
[59]
JUNG SK, GWONH, HONGJ, et al. Understand ing the degradation mechanisms of LiNi0. 5Co0. 2Mn0. 3O2 cathode material in lithium ion batteries[J]. Advanced energy materials, 2014, 4(1): 1300787. DOI: 10.1002/aenm.201300787. [本文引用:1]
[60]
ZHENG SJ, HUANGR, MAKIMURAY, et al. Microstructural changes in LiNi0. 8Co0. 15Al0. 05O2 positive electrode material during the first cycle[J]. Journal of the electrochemical society, 2011, 158(4): A357-A362. DOI: 10.1149/1.3544843. [本文引用:1]
[61]
ZOU YH, YANG XF, LV CX, et al. Multishelled Ni-Rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-Ion batteries[J]. Advanced science, 2017, 4(1): 1600262. DOI: 10.1002/advs.201600262. [本文引用:2]
LI JL, CAO CB, XU XY, et al. LiNi1/3Co1/3Mn1/3O2 hollow Nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries[J]. Journal of materials chemistry A, 2013, 1(38): 11848-11852. DOI: 10.1039/c3ta12375h. [本文引用:1]
[64]
LINF, MARKUS IM, NORDLUNDD, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature communications, 2014, 5: 3529. DOI: 10.1038/ncomms4529. [本文引用:1]
[65]
GUO FL, CHEN WC, YANG ZC, et al. Investigation on capacity decay of Li-rich LNMCO cathode material for lithium-ion batteries[J]. Synthetic metals, 2019, 258: 116216. DOI: 10.1016/j.synthmet.2019.116216. [本文引用:1]
[66]
LIU BS, WANG ZB, YU FD, et al. Facile strategy of NCA cation mixing regulation and its effect on electrochemical performance[J]. RSC advances, 2016, 6(110): 108558-108565. DOI: 10.1039/C6RA20146F. [本文引用:1]
[67]
YAMAMOTOY, OHTSUKAM, AZUMAY, et al. Cation mixing in LiNi0. 8Co0. 15Al0. 05O2 positive electrode material studied using high angular resolution electron channeling X-ray spectroscopy[J]. Journal of power sources, 2018, 401: 263-270. DOI: 10.1016/j.jpowsour.2018.08.100. [本文引用:1]
[68]
LIU XL, WANGS, WANGL, et al. Stabilizing the high-voltage cycle performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode material by Mg doping[J]. Journal of power sources, 2019, 438: 227017. DOI: 10.1016/j.jpowsour.2019.227017. [本文引用:1]
[69]
BECKERD, BÖRNERM, NÖLLER, et al. Surface modification of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries[J]. ACS applied materials & interfaces, 2019, 11(20): 18404-18414. DOI: 10.1021/acsami.9b02889. [本文引用:2]
[70]
GAOH, CAI JY, XU GL, et al. Surface modification for suppressing interfacial parasitic reactions of a Nickel- Rich Lithium-Ion cathode[J]. Chemistry of materials, 2019, 31(8): 2723-2730. DOI: 10.1021/acs.chemmater.8b04200. [本文引用:1]
[71]
HUANG YQ, HUANG YH, HU XL. Enhanced electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2 by nanoscale surface modification with Co3O4[J]. Electrochimica acta, 2017, 231: 294-299. DOI: 10.1016/j.electacta.2017.02.067. [本文引用:1]
[72]
GUM, BELHAROUAKI, ZHENG JM, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1): 760-767. DOI: 10.1021/nn305065u. [本文引用:1]
[73]
BOULINEAUA, SIMONINL, COLIN JF, et al. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries[J]. Nano letters, 2013, 13(8): 3857-3863. DOI: 10.1021/nl4019275. [本文引用:1]
[74]
LIJ, DOWNIE LE, MAL, et al. Study of the failure mechanisms of LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium ion batteries[J]. Journal of the electrochemical society, 2015, 162(7): A1401-A1408. DOI: 10.1149/2.1011507jes. [本文引用:1]
[75]
LI WD, DOLOCANA, OHP, et al. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries[J]. Nature communications, 2017, 8: 14589. DOI: 10.1038/ncomms14589. [本文引用:1]
[76]
LINF, MARKUS IM, NORDLUNDD, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature communications, 2014, 5(1): 3529. DOI: 10.1038/ncomms4529. [本文引用:1]
SCHWEIDLERS, DE BIASIL, GARCIAG, et al. Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: a long-term cycling study of full cells[J]. ACS applied energy materials, 2019, 2(10): 7375-7384. DOI: 10.1021/acsaem.9b01354. [本文引用:1]
[79]
SUN HH, MANTHIRAMA. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0. 9Co0. 05Mn0. 05]O2 cathode for lithium-ion batteries[J]. Chemistry of materials, 2017, 29(19): 8486-8493. DOI: 10.1021/acs.chemmater.7b03268. [本文引用:1]
[80]
MUKHERJEEP, FAENZA NV, PEREIRAN, et al. Surface structural and chemical evolution of layered LiNi0. 8Co0. 15Al0. 05O2 (NCA) under high voltage and elevated temperature conditions[J]. Chemistry of materials, 2018, 30(23): 8431-8445. DOI: 10.1021/acs.chemmater.7b05305. [本文引用:1]
[81]
ABRAHAM DP, TWESTEN RD, BALASUBRAMANIANM, et al. Surface changes on LiNi0. 8Co0. 2O2 particles during testing of high-power lithium-ion cells[J]. Electrochemistry communications, 2002, 4(8): 620-625. DOI: 10.1016/s1388-2481(02)00388-0. [本文引用:1]
[82]
WATANABES, KINOSHITAM, HOSOKAWAT, et al. Capacity fading of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge-discharge cycling on the suppression of the micro-crack generation of LiAlyNi1-x-yCoxO2 particle)[J]. Journal of power sources, 2014, 260: 50-56. DOI: 10.1016/j.jpowsour.2014.02.103. [本文引用:1]
SUN YK, CHEN ZH, NOH HJ, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature materials, 2012, 11(11): 942-947. DOI: 10.1038/nmat3435. [本文引用:1]
[85]
KOENIG JR GM, BELHAROUAKI, DENGH, et al. Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials[J]. Chemistry of materials, 2011, 23(7): 1954-1963. DOI: 10.1021/cm200058c. [本文引用:1]
[86]
SIMS, OHP, PARKS, et al. Critical thickness of SiO2 coating layer on Core@Shell Bulk@Nanowire Si anode materials for Li-Ion batteries[J]. Advanced materials, 2013, 25(32): 4498-4503. DOI: 10.1002/adma.201301454. [本文引用:1]
[87]
MYUNG ST, AMINEK, SUN YK. Surface modification of cathode materials from Nano-to microscale for rechargeable lithium-ion batteries[J]. Journal of materials chemistry, 2010, 20(34): 7074-7095. DOI: 10.1039/c0jm00508h. [本文引用:1]
[88]
SUN YY, LIUS, HOU YK, et al. In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte[J]. Journal of power sources, 2019, 410-411: 115-123. DOI: 10.1016/j.jpowsour.2018.11.015. [本文引用:1]
[89]
GAN ZG, HU GR, PENG ZD, et al. Surface modification of LiNi0. 8Co0. 1Mn0. 1O2 by WO3 as a cathode material for LIB[J]. Applied surface science, 2019, 481: 1228-1238. DOI: 10.1016/j.apsusc.2019.03.116. [本文引用:1]
[90]
GILBERT JA, SHKROB IA, ABRAHAM DP. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. Journal of the electrochemical society, 2017, 164(2): A389-A399. DOI: 10.1149/2.1111702jes. [本文引用:1]
[91]
MINK, SEO SW, SONG YY, et al. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0. 8Co0. 1Mn0. 1O2 cathode materials[J]. Physical chemistry chemical physics, 2017, 19(3): 1762-1769. DOI: 10.1039/c6cp06270a. [本文引用:1]
[92]
HAIKO, LEIFERN, SAMUK-FROMOVICHZ, et al. On the surface chemistry of LiMO2 cathode materials (M =[MnNi] and [MnNiCo]) electrochemical, spectroscopic, and calorimetric studies[J]. Journal of the electro- chemical society, 2010, 157(10): A1099-A1107. DOI: 10.1149/1.3474222. [本文引用:1]
[93]
TSUNEKAWAH, TANIMOTOS, MARUBAYASHIR, et al. Capacity fading of graphite electrodes due to the deposition of manganese ions on them in Li-ion batteries[J]. Journal of the electrochemical society, 2002, 149(10): A1326-A1331. DOI: 10.1149/1.1502686. [本文引用:1]
QIUB, ZHANG MH, XIA YG, et al. Understand ing and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries[J]. Chemistry of materials, 2017, 29(3): 908-915. DOI: 10.1021/acs.chemmater.6b04815. [本文引用:2]
[96]
JUNGR, LINSENMANNF, THOMASR, et al. Nickel, manganese, and cobalt dissolution from Ni-Rich NMC and their effects on NMC622-graphite Cells[J]. Journal of the electrochemical society, 2019, 166(2): A378-A389. DOI: 10.1149/2.1151902jes. [本文引用:1]
[97]
LASZCZYNSKIN, SOLCHENBACHS, GASTEIGER HA, et al. Understand ing electrolyte decomposition of graphite/NCM811 cells at elevated operating voltage[J]. Journal of the electrochemical society, 2019, 166(10): A1853-A1859. DOI: 10.1149/2.0571910jes. [本文引用:1]
[98]
RAMASAMY HV, SINHAS, PARKJ, et al. Enhancement of electrochemical activity of Ni-rich LiNi0. 8Mn0. 1Co0. 1O2 by precisely controlled Al2O3 nanocoatings via atomic layer deposition[J]. Journal of electrochemical science and technology, 2019, 10(2): 196-205. DOI: 10.5229/JECST.2019.10.2.196. [本文引用:1]
[99]
HOU PY, YIN JM, LIF, et al. High-rate and long-life lithium-ion batteries coupling surface-Al3+-enriched LiNi0. 7Co0. 15Mn0. 15O2 cathode with porous Li4Ti5O12 anode[J]. Chemical engineering journal, 2019, 378: 122057. DOI: 10.1016/j.cej.2019.122057. [本文引用:1]
[100]
LIU BS, SUI XL, ZHANG SH, et al. Investigation on electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2 coated by heterogeneous layer of TiO2[J]. Journal of alloys and compounds, 2018, 739: 961-971. DOI: 10.1016/j.jallcom.2017.12.340. [本文引用:1]
[101]
YANGX, TANG YW, QU YH, et al. Bifunctional nano-ZrO2 modification of LiNi0. 92Co0. 08O2 cathode enabling high-energy density lithium ion batteries[J]. Journal of power sources, 2019, 438: 226978. DOI: 10.1016/j.jpowsour.2019.226978. [本文引用:1]
[102]
CHENT, WANGF, LIX, et al. Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0. 8Co0. 15Al0. 05O2 cathode material[J]. Applied surface science, 2019, 465: 863-870. DOI: 10.1016/j.apsusc.2018.09.250. [本文引用:1]
KONDRAKOV AO, SCHMIDTA, XUJ, et al. Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries[J]. The journal of physical chemistry C, 2017, 121(6): 3286-3294. DOI: 10.1021/acs.jpcc.6b12885. [本文引用:1]
[105]
KIMH, KIM MG, JEONG HY, et al. A new coating method for alleviating surface degradation of LiNi0. 6Co0. 2Mn0. 2O2 cathode material: nanoscale surface treatment of primary particles[J]. Nano letters, 2015, 15(3): 2111-2119. DOI: 10.1021/acs.nanolett.5b00045. [本文引用:1]
[106]
WUF, TIANJ, LIUN, et al. Alleviating structural degradation of nickel-rich cathode material by eliminating the surface Fm$\bar{3}$m phase[J]. Energy Storage Materials, 2017, 8: 134-140. DOI: 10.1016/j.ensm.2017.05.008. [本文引用:1]
[107]
MILLER DJ, PROFFC, WEN JG, et al. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy[J]. Advanced energy materials, 2013, 3(8): 1098-1103. DOI: 10.1002/aenm.201300015. [本文引用:1]
[108]
RYU HH, PARK KJ, YOON CS, et al. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0. 6 ≤ x ≤ 0. 95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?[J]. Chemistry of materials, 2018, 30(3): 1155-1163. DOI: 10.1021/acs.chemmater.7b05269. [本文引用:1]
[109]
WUF, TIANJ, SU YF, et al. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS applied materials & interfaces, 2015, 7(14): 7702-7708. DOI: 10.1021/acsami.5b00645. [本文引用:1]
[110]
AHNY, JO YN, CHOW, et al. Mechanism of capacity fading in the LiNi0. 8Co0. 1Mn0. 1O2 cathode material for lithium-ion batteries[J]. Energies, 2019, 12(9): 1638. DOI: 10.3390/en12091638. [本文引用:1]
[111]
DUAN JG, HU GR, CAO YB, et al. Enhanced electrochemical performance and storage property of LiNi0. 815Co0. 15Al0. 035O2 via Al gradient doping[J]. Journal of power sources, 2016, 326: 322-330. DOI: 10.1016/j.jpowsour.2016.07.008. [本文引用:1]
[112]
SU YF, CHENG, CHENL, et al. High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries[J]. ACS applied materials & interfaces, 2019, 11(40): 36697-36704. DOI: 10.1021/acsami.9b1211. [本文引用:1]
[113]
ZHANG YD, LIH, LIU JX, et al. LiNi0. 90Co0. 07Mg0. 03O2 cathode materials with Mg- concentration gradient for rechargeable lithium-ion batteries[J]. Journal of materials chemistry A, 2019, 7(36): 20958-20964. DOI: 10.1039/C9TA02803J. [本文引用:1]
[114]
LIANGM, SUN YM, SONG DW, et al. Superior electrochemical performance of quasi-concentration-gradient LiNi0. 8Co0. 15Al0. 05O2 cathode material synthesized with multi-shell precursor and new aluminum source[J]. Electrochimica acta, 2019, 300: 426-436. DOI: 10.1016/j.electacta.2019.01.125. [本文引用:1]
[115]
LIAO JY, MANTHIRAMA. Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries[J]. Journal of power sources, 2015, 282: 429-436. DOI: 10.1016/j.jpowsour.2015.02.078. [本文引用:1]