殷志刚, 王静, 曹敏花. 锂离子电池石墨负极材料衰减机理研究[J]. 新能源进展, 2021,9(2): 158-168
YIN Zhi-gang, WANG Jing, CAO Min-hua. Research on the Degradation Mechanism of Negative Materials for Lithium-Ion Battery[J]. ADV NEW RENEWABLE EN, 2021,9(2): 158-168.
Research on the Degradation Mechanism of Negative Materials for Lithium-Ion Battery
YIN Zhi-gang1,2, WANG Jing1, CAO Min-hua2
1. Beijing Idrive Automotive Co., Ltd., Beijing 102202, China
2. Beijing Institute of Technology, Beijing 100081, China
Abstract
Graphite anode materials have been widely used in the field of lithium batteries because of their high specific capacity, low price and environmental friendliness. However, the material also exhibits some defects during the charge-discharge process, such as microcracks, graphitization degree reduction, contact loss, solid electrolyte interphase film change, lithium metal precipitation, inhomogeneity and other defects, which cause the capacity degradation of lithium-ion battery. In this paper, the mechanism of capacity decay in the cycle of anode materials was summarized, and the solutions of various degradation mechanisms were given briefly.
图2 (a ~ d)循环前未包覆及0.5%、1%和2% AlF3包覆电极SEM图; (e ~ h)循环后未包覆及0.5%、1%和2% AlF3包覆电极SEM图[35]Fig. 2 SEM images of the electrodes with uncoated graphite particles and 0.5%, 1%, and 2% AlF3-coated graphite particles[35]before (a-d) and after 300 cycles (e-h), respectively
图3 石墨材料的拉曼光谱[37]:(a)纯石墨; (b)新极片; (c)首次循环; (d)1 500次循环Fig. 3 Raman spectra of the graphite materials[37]: (a) A12 graphite; (b) fresh negative electrode; (c) negative electrodes harvested from cells after the first cycle; (d) after 1 500 cycles
图8 天然石墨高温存储不同时间后的SEM[65]:(a)新极片; (b)15 d; (c)30 dFig. 8 Analysis of SEI formed on anode electrode for NAG cells with different storage time[65]: (a) fresh; (b) 15days; (c) 30days
图9 天然石墨在60℃高温存储不同时间不同状态下阻抗[65]:(a)锂全插入; (b)55%锂插入; (c)锂全脱出Fig. 9 Nyquist plots of the NLG cells with different storage conditions and time[65]: (a) lithiation; (b) 55% lithiation; (c) de-lithiation
图10 (a)电芯循环性能图; (b)无添加剂电芯循环后石墨负极SEM; (c)TMSP添加剂电芯循环后石墨负极SEM[69]Fig. 10 (a) Cycling performance for a cell; (b) SEM analyse for the graphite anode cycled without additive; (c) SEM analyse for the graphite anode cycled with TMSP additive[69]
图11 电芯循环后结果[73]:(a)负极拆解图; (b)不同SOC下放电曲线; (c)不同SOC下dV/dQ; (d)不同SOC下dQ/dVFig. 11 Cell cycle test results[73]: (a) picture of the graphite electrode; (b) discharge profiles under different SOC; (c) dV/dQ profiles under different SOC; (d) dQ/dV profiles with different SOC
图12 (a)电芯循环测试结果; (b)未包覆石墨材料循环后SEM; (c)Cu包覆石墨材料循环后SEM; (d)Ni包覆石墨材料循环后SEM[84]Fig. 12 (a) Cell cycle test result; (b) SEM of the graphite without coating; (c) SEM of the graphite with Cu coating; (d) SEM of the graphite with Ni coating[84]
图14 不同外部压力C/25放电倍率下电芯容量曲线(插入图是600次循环后容量衰减结果)[98]Fig. 14 Capacity curve of the cell under different external pressures with C/25 discharge rate (the insertion figure is the result of capacity attenuation after 600 cycles) [98]
LAGADEC MF, ZAHNR, WOODV. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature energy, 2019, 4(1): 16-25. DOI: 10.1038/s41560-018-0295-9. [本文引用:1]
[4]
WANG QS, JIANG LH, YUY, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano energy, 2019, 55: 93-114. DOI: 10.1016/j.nanoen.2018.10.035. [本文引用:1]
[5]
LIU BH, JIA YK, YUAN CH, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy storage materials, 2020, 24: 85-112. DOI: 10.1016/j.ensm.2019.06.036. [本文引用:1]
[6]
HANNAN MA, LIPU M SH, HUSSAINA, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and sustainable energy reviews, 2017, 78: 834-854. DOI: 10.1016/j.rser.2017.05.001. [本文引用:1]
[7]
DUNN JB, GAINESL, KELLY JC, et al. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction[J]. Energy & environmental science, 2015, 8(1): 158-168. DOI: 10.1039/c4ee03029j. [本文引用:1]
[8]
CHEN SR, DAIF, CAIM. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS energy letters, 2020, 5(10): 3140-3151. DOI: 10.1021/acsenergylett.0c01545. [本文引用:1]
[9]
XIAY, ZHENG JM, WANG CM, et al. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano energy, 2018, 49: 434-452. DOI: 10.1016/j.nanoen.2018.04.062. [本文引用:1]
[10]
TANGZ, TANG CH, GONGH. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes[J]. Advanced functional materials, 2012, 22(6): 1272-1278. DOI: 10.1002/adfm.201102796. [本文引用:1]
[11]
LEE JH, YOON CS, HWANG JY, et al. High-energy- density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0. 85Co0. 05Mn0. 10]O2 cathode[J]. Energy & environmental science, 2016, 9(6): 2152-2158. DOI: 10.1039/C6EE01134A. [本文引用:1]
[12]
LIU GL, LI ML, WU NT, et al. Single-crystalline particles: an effective way to ameliorate the intragranular cracking, thermal stability, and capacity fading of the LiNi0. 6Co0. 2Mn0. 2O2 electrodes[J]. Journal of the electrochemical society, 2018, 165(13): A3040-A3047. DOI: 10.1149/2.0491813jes. [本文引用:1]
[13]
WU NT, WUH, KIM JK, et al. Restoration of degraded nickel-rich cathode materials for long-Life lithium-ion batteries[J]. ChemElectroChem, 2018, 5(1): 78-83. DOI: 10.1002/celc.201700979. [本文引用:1]
[14]
PAREKH MH, SEDIAKO AD, NASERIA, et al. In situ mechanistic elucidation of superior Si-C-graphite li-ion battery anode formation with thermal safety aspects[J]. Advanced energy materials, 2020, 10(2): 1902799. DOI: 10.1002/aenm.201902799. [本文引用:1]
[15]
ANDRED, HAINH, LAMPP, et al. Future high-energy density anode materials from an automotive application perspective[J]. Journal of materials chemistry A, 2017, 5(33): 17174-17198. DOI: 10.1039/C7TA03108D. [本文引用:1]
[16]
MAJ, HUP, CUI GL, et al. Surface and interface issues in spinel LiNi0. 5Mn1. 5O4: insights into a potential cathode material for high energy density lithium ion batteries[J]. Chemistry of materials, 2016, 28(11): 3578-3606. DOI: 10.1021/acs.chemmater.6b00948. [本文引用:1]
[17]
ZHANG SS. Understand ing of performance degradation of LiNi0. 80Co0. 10Mn0. 10O2 cathode material operating at high potentials[J]. Journal of energy chemistry, 2020, 41: 135-141. DOI: 10.1016/j.jechem.2019.05.013. [本文引用:1]
[18]
HATSUKADET, SCHIELEA, HARTMANNP, et al. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes[J]. ACS applied materials & interfaces, 2018, 10(45): 38892-38899. DOI: 10.1021/acsami.8b13158. [本文引用:1]
[19]
SONY, LEET, WENB, et al. High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite[J]. Energy & environmental science, 2020, 13(10): 3723-3731. DOI: 10.1039/d0ee02230f. [本文引用:1]
[20]
HANH, PARKH, KIL KC, et al. Microstructure control of the graphite anode with a high density for Li ion batteries with high energy density[J]. Electrochimica acta, 2015, 166: 367-371. DOI: 10.1016/j.electacta.2015.03.037. [本文引用:1]
[21]
PHAM HQ, LEE HY, HWANG EH, et al. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries[J]. Journal of power sources, 2018, 404: 13-19. DOI: 10.1016/j.jpowsour.2018.09.075. [本文引用:1]
PRADAE, DI DOMENICOD, CREFFY, et al. Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications[J]. Journal of The Electrochemical Society, 2012, 159(9): A1508-A1519. DOI: 10.1149/2.064209jes. [本文引用:1]
[24]
ITURRONDOBEITIAA, AGUESSEF, GENIESS, et al. Post-mortem analysis of calendar-aged 16 Ah NMC/graphite pouch cells for EV application[J]. The journal of physical chemistry C, 2017, 121(40): 21865-21876. DOI: 10.1021/acs.jpcc.7b05416. [本文引用:1]
[25]
SCHMID AU, RIDDERA, HAHNM, et al. Aging of extracted and reassembled Li-ion electrode material in coin cell-capabilities and limitations[J]. Batteries, 2020, 6(2): 33. DOI: 10.3390/batteries6020033. [本文引用:1]
[26]
MENACHEMC, PELEDE, BURSTEINL, et al. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries[J]. Journal of power sources, 1997, 68(2): 277-282. DOI: 10.1016/s0378-7753(96)02629-8. [本文引用:1]
XING BL, ZHANG CT, CAO YJ, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel processing technology, 2018, 172: 162-171. DOI: 10.1016/j.fuproc.2017.12.018. [本文引用:1]
[29]
WANG HY, WANG FM. Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode[J]. Journal of power sources, 2013, 233: 1-5. DOI: 10.1016/j.jpowsour.2013.01.134. [本文引用:1]
[30]
LINN, JIAZ, WANGZ, et al. Understand ing the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy[J]. Journal of power sources, 2017, 365: 235-239. DOI: 10.1016/j.jpowsour.2017.08.045. [本文引用:1]
[31]
YOOM, FRANK CW, MORIS, et al. Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery[J]. Polymer, 2003, 44(15): 4197-4204. DOI: 10.1016/S0032-3861(03)00364-1. [本文引用:1]
[32]
WANGY, ZHENG HY, QU QT, et al. Enhancing electrochemical properties of graphite anode by using poly(methylmethacrylate)-poly(vinylidene fluoride) composite binder[J]. Carbon, 2015, 92: 318-326. DOI: 10.1016/j.carbon.2015.04.084. [本文引用:1]
[33]
MA JB, LI YN, GAOH, et al. Effect of microcracks on graphite anode materials for lithium-ion batteries[J]. ChemistrySelect, 2020, 5(19): 5742-5747. DOI: 10.1002/slct.202000163. [本文引用:1]
[34]
TAIWO OO, LOVERIDGEM, BEATTIE SD, et al. Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography[J]. Electrochimica acta, 2017, 253: 85-92. DOI: 10.1016/j.electacta.2017.08.161. [本文引用:1]
[35]
DINGF, XUW, CHOID, et al. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(25): 12745-12751. DOI: 10.1039/c2jm31015e. [本文引用:1]
LIY, BETTGEM, POLZINB, et al. Understand ing long- term cycling performance of Li1. 2Ni0. 15Mn0. 55Co0. 1O2-graphite lithium-ion cells[J]. Journal of the electrochemical society, 2013, 160(5): A3006-A3019. DOI: 10.1149/2.002305jes. [本文引用:1]
[38]
ISHIHARAT, YOKOYAMAY, KOZONOF, et al. Intercalation of PF6- anion into graphitic carbon with nano pore for dual carbon cell with high capacity[J]. Journal of power sources, 2011, 196(16): 6956-6959. DOI: 10.1016/j.jpowsour.2010.11.075. [本文引用:1]
ISHIHARAT, KOGAM, MATSUMOTOH, et al. Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery[J]. Electrochemical and solid-state letters, 2007, 10(3): A74-A76. DOI: 10.1149/1.2424263. [本文引用:1]
[41]
VERMAP, NOVÁKP. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite[J]. Carbon, 2012, 50(7): 2599-2614. DOI: 10.1016/j.carbon.2012.02.019. [本文引用:1]
KOMABAS, KAPLANB, OHTSUKAT, et al. Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries[J]. Journal of power sources, 2003, 119-121: 378-382. DOI: 10.1016/s0378-7753(03)00224-6. [本文引用:1]
[44]
LIB, WANG YQ, LIN HB, et al. Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting[J]. Journal of power sources, 2014, 267: 182-187. DOI: 10.1016/j.jpowsour.2014.05.073. [本文引用:1]
[45]
ABEK, YOSHITAKEH, KITAKURAT, et al. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries[J]. Electrochimica acta, 2004, 49(26): 4613-4622. DOI: 10.1016/j.electacta.2004.05.016. [本文引用:1]
HUESKERJ, FROBÖSEL, KWADEA, et al. In situ dilatometric study of the binder influence on the electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into graphite[J]. Electrochimica acta, 2017, 257: 423-435. DOI: 10.1016/j.electacta.2017.10.042. [本文引用:1]
[49]
JURNGS, BROWN ZL, KIMJ, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy & environmental science, 2018, 11(9): 2600-2608. DOI: 10.1039/C8EE00364E. [本文引用:1]
[50]
HOUC, HAN JH, LIUP, et al. Operand o observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy[J]. Advanced energy materials, 2019, 9(45): 1902675. DOI: 10.1002/aenm.201902675. [本文引用:1]
[51]
ZHOU YF, SUM, YU XF, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature nanotechnology, 2020, 15(3): 224-230. DOI: 10.1038/s41565-019-0618-4. [本文引用:1]
[52]
WANG MQ, PENGZ, LUO WW, et al. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure[J]. Advanced energy materials, 2019, 9(12): 1802912. DOI: 10.1002/aenm.201802912. [本文引用:1]
[53]
OHUEK, UTSUNOMIYAT, HATOZAKIO, et al. Self-discharge behavior of polyacenic semiconductor and graphite negative electrodes for lithium-ion batteries[J]. Journal of power sources, 2011, 196(7): 3604-3610. DOI: 10.1016/j.jpowsour.2010.12.073. [本文引用:1]
[54]
MARKOVSKYB, NIMBERGERA, TALYOSEFY, et al. On the influence of additives in electrolyte solutions on the electrochemical behavior of carbon/LiCoO2 cells at elevated temperatures[J]. Journal of power sources, 2004, 136(2): 296-302. DOI: 10.1016/j.jpowsour.2004.04.017. [本文引用:1]
[55]
AURBACHD, ZINIGRADE, COHENY, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid state ionics, 2002, 148(3/4): 405-416. DOI: 10.1016/s0167-2738(02)00080-2. [本文引用:1]
VERMAP, MAIREP, NOVÁKP. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica acta, 2010, 55(22): 6332-6341. DOI: 10.1016/j.electacta.2010.05.072. [本文引用:1]
[60]
XUK, LAMY, ZHANG SS, et al. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry[J]. The Journal of physical chemistry C, 2007, 111(20): 7411-7421. DOI: 10.1021/jp068691u. [本文引用:1]
[61]
CRESCE AV, RUSSELL SM, BAKER DR, et al. In situ and quantitative characterization of solid electrolyte interphases[J]. Nano letters, 2014, 14(3): 1405-1412. DOI: 10.1021/nl404471v. [本文引用:1]
[62]
DELACOURTC, KWONGA, LIUX, et al. Effect of manganese contamination on the solid-electrolyte-interphase properties in Li-ion batteries[J]. Journal of the electrochemical society, 2013, 160(8): A1099-A1107. DOI: 10.1149/2.035308jes. [本文引用:1]
[63]
OCHIDAM, DOMIY, DOIT, et al. Influence of manganese dissolution on the degradation of surface films on edge plane graphite negative-electrodes in lithium-ion batteries[J]. Journal of the electrochemical society, 2012, 159(7): A961-A966. DOI: 10.1149/2.031207jes. [本文引用:1]
[64]
TSUJIKAWAT, YABUTAK, MATSUSHITAT, et al. A study on the cause of deterioration in float-charged lithium-ion batteries using LiMn2O4 as a cathode active material[J]. Journal of the electrochemical society, 2011, 158(3): A322-A325. DOI: 10.1149/1.3543651. [本文引用:1]
[65]
KWAKG, PARKJ, LEEJ, et al. Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries[J]. Journal of power sources, 2007, 174(2): 484-492. DOI: 10.1016/j.jpowsour.2007.06.169. [本文引用:1]
[66]
HARUTAM, OKUBOT, MASUOY, et al. Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives[J]. Electrochimica acta, 2017, 224: 186-193. DOI: 10.1016/j.electacta.2016.12.071. [本文引用:1]
[67]
WANG XJ, LEE HS, LIH, et al. The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries[J]. Electrochemistry communications, 2010, 12(3): 386-389. DOI: 10.1016/j.elecom.2009.12.041. [本文引用:1]
YIMT, HAN YK. Tris(trimethylsilyl) phosphite as an efficient electrolyte additive to improve the surface stability of graphite anodes[J]. ACS applied materials & interfaces, 2017, 9(38): 32851-32858. DOI: 10.1021/acsami.7b11309. [本文引用:1]
[70]
REDDY MV, SUBBA RAO GV, CHOWDARI B VR. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical reviews, 2013, 113(7): 5364-5457. DOI: 10.1021/cr3001884. [本文引用:1]
YANG XG, LENG YJ, ZHANG GS, et al. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging[J]. Journal of power sources, 2017, 360: 28-40. DOI: 10.1016/j.jpowsour.2017.05.110. [本文引用:1]
[73]
PETZLM, DANZER MA. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of power sources, 2014, 254: 80-87. DOI: 10.1016/j.jpowsour.2013.12.060. [本文引用:2]
[74]
CAMPBELL ID, MARZOOKM, MARINESCUM, et al. How observable is lithium plating? Differential voltage analysis to identify and quantify lithium plating following fast charging of cold lithium-ion batteries[J]. Journal of the electrochemical society, 2019, 166(4): A725-A739. DOI: 10.1149/2.0821904jes. [本文引用:1]
[75]
MEI WX, ZHANGL, SUN JH, et al. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery[J]. Energy storage materials, 2020, 32: 91-104. DOI: 10.1016/j.ensm.2020.06.021. [本文引用:2]
BHATTACHARYYAR, KEYB, CHEN HL, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature materials, 2010, 9(6): 504-510. DOI: 10.1038/nmat2764. [本文引用:1]
[78]
LU WQ, LÓPEZ CM, LIU NT, et al. Overcharge effect on morphology and structure of carbon electrodes for lithium-ion batteries[J]. Journal of the electrochemical society, 2012, 159(5): A566-A570. DOI: 10.1149/2.jes035205. [本文引用:1]
[79]
JOHOF, RYKARTB, IMHOFR, et al. Key factors for the cycling stability of graphite intercalation electrodes for lithium-ion batteries[J]. Journal of power sources, 1999, 81-82: 243-247. DOI: 10.1016/s0378-7753(99)00195-0. [本文引用:1]
[80]
CHEVALLIERF, GAUTIERS, SALVETAT JP, et al. Effects of post-treatments on the performance of hard carbons in lithium cells[J]. Journal of power sources, 2001, 97-98: 143-145. DOI: 10.1016/s0378-7753(01)00525-0. [本文引用:1]
[81]
STRIEBEL KA, SIERRAA, SHIMJ, et al. The effect of compression on natural graphite anode performance and matrix conductivity[J]. Journal of power sources, 2004, 134(2): 241-251. DOI: 10.1016/j.jpowsour.2004.03.052. [本文引用:1]
[82]
RUBINO RS, TAKEUCHI ES. The study of irreversible capacity in lithium-ion anodes prepared with thermally oxidized graphite[J]. Journal of power sources, 1999, 81-82: 373-377. DOI: 10.1016/S0378-7753(99)00217-7. [本文引用:1]
[83]
SHIMJ, STRIEBEL KA. Electrochemical characterization of thermally oxidized natural graphite anodes in lithium-ion batteries[J]. Journal of power sources, 2007, 164(2): 862-867. DOI: 10.1016/j.jpowsour.2006.09.111. [本文引用:1]
[84]
TALLMAN KR, ZHANG BJ, WANGL, et al. Anode overpotential control via interfacial modification: inhibition of lithium plating on graphite anodes[J]. ACS applied materials & interfaces, 2019, 11(50): 46864-46874. DOI: 10.1021/acsami.9b16794. [本文引用:1]
LIUJ, KUNZM, CHENK, et al. Visualization of charge distribution in a lithium battery electrode[J]. The journal of physical chemistry letters, 2010, 1(14): 2120-2123. DOI: 10.1021/jz100634n. [本文引用:1]
[87]
WALDMANNT, WOHLFAHRT-MEHRENSM. In-operand o measurement of temperature gradients in cylindrical lithium-ion cells during high-current discharge[J]. ECS electrochemistry letters, 2015, 4(1): A1-A3. DOI: 10.1149/2.0031501eel. [本文引用:1]
WESTPHAL BG, MAINUSCHN, MEYERC, et al. Influence of high intensive dry mixing and calendering on relative electrode resistivity determined via an advanced two point approach[J]. Journal of energy storage, 2017, 11: 76-85. DOI: 10.1016/j.est.2017.02.001. [本文引用:1]
[92]
ZHENG HH, ZHANGL, LIUG, et al. Correlationship between electrode mechanics and long-term cycling performance for graphite anode in lithium ion cells[J]. Journal of power sources, 2012, 217: 530-537. DOI: 10.1016/j.jpowsour.2012.06.045. [本文引用:1]
[93]
YOOM, FRANK CW, MORIS. Interaction of poly(vinylidene fluoride) with graphite particles. 1. surface morphology of a composite film and its relation to processing parameters[J]. Chemistry of materials, 2003, 15(4): 850-861. DOI: 10.1021/cm0209970. [本文引用:1]
[94]
YOOM, FRANK CW, MORIS, et al. Interaction of poly(vinylidene fluoride) with graphite particles. 2. effect of solvent evaporation kinetics and chemical properties of PVDF on the surface morphology of a composite film and its relation to electrochemical performance[J]. Chemistry of materials, 2004, 16(10): 1945-1953. DOI: 10.1021/cm0304593. [本文引用:1]
[95]
KRAYTSBERGA, EIN-ELIY. Conveying advanced li-ion battery materials into practice the impact of electrode slurry preparation skills[J]. Advanced energy materials, 2016, 6(21): 1600655. DOI: 10.1002/aenm.201600655. [本文引用:1]
SCHILLINGA, GABRIELF, DIETRICHF, et al. Design of an automated system to accelerate the electrolyte distribution in lithium-ion batteries[J]. International journal of mechanical engineering and robotics research, 2019, 8(1): 162-166. DOI: 10.1817/ijmerr.8.1.162-166. [本文引用:1]
[98]
MUSSA AS, KLETTM, LINDBERGHG, et al. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells[J]. Journal of power sources, 2018, 385: 18-26. DOI: 10.1016/j.jpowsour.2018.03.020. [本文引用:1]