有机固体废弃物热解技术及热解气组成综述
郭怡君1,2, 李军1,3,4,, 黄宏宇1,4, 小林敬幸5
1.中国科学院广州能源研究所,广州 510640
2.中国科学技术大学 工程科学学院,合肥 230026
3.江西省碳中和研究中心,南昌 330096
4.中国科学技术大学 能源科学与技术学院,广州 510640
5.日本名古屋大学 化学系统工程系,名古屋 464-8603
†通信作者:李军,E-mail:lijun@ms.giec.ac.cn
摘要

近年来,将固体废弃物转化为各种燃料的能源化利用引起研究人员的广泛关注。有机固体废弃物热解技术可以从有机固体废弃物中生产不同组分的燃料和其他增值产品,有很大潜力被用作能源使用。然而,有机固体废弃物因来源广泛、组成差异等,采用不同热解工艺技术和不同反应条件时,其有效组分具有巨大差异。为考察热解温度对热解气态产物组成的影响,对不同有机固体废弃物的热解气态产物组成的研究现状进行了综述,并对热解气的有效利用方法进行了分析,为后续热解气的能源化利用提供参考。

关键词: 有机固体废弃物; 垃圾能源化; 垃圾热解处理; 热解气体; 气体组分
中图分类号:TK16 文献标识码:A 文章编号:2095-560X(2023)02-0106-17
Review of the Pyrolysis Technology and Pyrolysis Gas Composition on the Organic Solid Wastes
GUO Yi-jun1,2, LI Jun1,3,4, HUANG Hong-yu1,4, KOBAYASHI Noriyuki5
1.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
2.School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
3.Jiangxi Carbon Neutralization Research Center, Nanchang 330096, China
4.School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
5.Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
Abstract

In recent years, using organic solid waste as fuels has drawn increasing research attention. The pyrolysis technology of organic solid waste can produce various fuels or valuable by-products, which have a great potential to be used as a renewable energy source. However, due to a wide range of sources and different compositions, the effective pyrolysis products of organic solid waste can vary greatly when different pyrolysis technology and reaction conditions are adopted. In order to investigate the influence of pyrolysis temperature on the composition of pyrolysis gaseous products, this review summarizes the research status of the composition of pyrolysis gaseous products of different organic solid wastes, analyzes the effective utilization method of pyrolysis gas, so as to provide a reference for the energy utilization of pyrolysis gas in the future.

Key words: organic solid waste; waste energy regeneration; pyrolysis of refuse; pyrolysis gas; gas composition
0 引言

固体废弃物是经过加工、使用等产生的丧失原有使用价值的固态、半固态物质, 其虽然失去原有利用价值, 但还具有潜在的利用价值。我国城市化步伐日益加快, 在这一过程中产生了大量的固体废弃物, 给环境造成了严重的影响。热解作为当前处理固体废弃物的一种方式, 是将有机物在无氧环境下进行的热分解过程[1], 获得热解油、生物炭和热解气等能源产品。热解产生的气体产物含有氢气(H2)、一氧化碳(CO)和甲烷(CH4)等可燃组分, 放弃这些低热值气体不但损失了大量能量, 而且CO气体还会污染地球环境。因此, 将有机固体废弃物热解气能源化利用具有十分重要的意义。

固体废弃物的处理方式有很多种, 比如填埋、堆肥、焚烧、热解和气化。选择何种处理方式取决于多种因素, 如固体废弃物的来源和类型、处理废弃物的设备和地点等[2]。以往通常将固体废弃物存放在露天垃圾场, 然后进行露天焚烧, 来自工业的有害废弃物常与城市垃圾一起在露天垃圾场或垃圾填埋场处置。垃圾填埋会产生各种环境问题, 包括土地和地下水的污染、有毒气体和温室气体的排放, 导致各种疾病的苍蝇和蚊子数量增加等[3]。目前固体废弃物管理系统已逐渐改善。

从有机固体废弃物中回收能量是一种有效管理固体废弃物的方法。一系列研究表明, 从固体废弃物中回收能量在经济上是可行和可持续的[4, 5, 6, 7]。热、电或燃料等各种形式的能量都可以回收[8]。回收技术可分为两类, 一类是生物转化技术, 通过该技术可以产生H2、CH4和其他可燃气体等; 另一类是热化学转化技术, 包括焚烧、气化和热解[9]图1显示了有机固体废弃物的几种能量回收方案。

图1 有机固体废弃物的能源化途径Fig. 1 Energy conversion of organic solid waste

生物转化技术是一种环保的能量回收技术[10], 适用于含有大量可生物降解有机物和水分的固体废弃物, 在这个过程中, 垃圾中的有机物被微生物分解。厌氧消化是这种转化技术下的主要能量回收途径, 这一过程需要在无氧环境下进行, 垃圾中的有机物通过厌氧消化降解产生沼气和污泥。使用该工艺每吨湿废料可产生23 ~ 265 m3的沼气[11] , 沼气通常由50% ~ 75% CH4、25% ~ 50% CO2和1% ~ 15%(如无特殊说明, 均指体积百分数)的其他气体组成[12], 工艺参数和垃圾的组成对沼气的质量影响显著。产生的污泥可用于农业领域作为肥料或改善土壤质量[13, 14]。可见, 生物转化技术有利于有机固体废弃物的能量回收。

热化学转化技术是一种适用于含有较低水分和有机物的固体废弃物的能量回收技术, 包括焚烧、气化和热解。焚烧是一个完全氧化燃烧过程, 是垃圾最常见的热处理方式。通常情况下, 未经处理的城市生活垃圾(municipal solid waste, MSW)更适合采用该工艺, 每吨城市生活垃圾焚烧产生的平均能量范围为500 ~ 600 kW∙ h[15]。直接燃烧废弃物是不可持续的自然资源消耗, 造成环境污染, 影响人类健康, 因此不利于循环经济的发展。

气化是使用热化学转化技术对有机固体废弃物进行能量回收的另一种处理技术。在气化过程中, 固体废弃物中的有机物被转化为合成气, 合成气由CO2、CO、H2和CH4组成[16]。气化这一过程需要垃圾预处理、800 ~ 1 600℃的高温和受控的氧气供应[17], 合成气的产量取决于所用气化炉的类型, 采用该工艺可生产合成气约500 ~ 2 500 m3/t[18]。在气化过程中, 材料在受控氧气下发生热降解, 反应器中生成的产物里含有大量的灰分、多环芳烃和其他杂质。由于气化的运行成本和维护费用较高, 因此在选择何种处理技术时气化的优先级一般低于热解。

在各种处置技术中, 热解因特别适用于原料组成复杂、过程难控制的有机固体废弃物的清洁热转化, 已成为有机固体废弃物热处置的重要技术之一。该技术可获得中低热值可燃气, 即固体废弃物热解气, 该热解气的高效清洁利用是当前的研究热点。

1 有机固体废弃物热解气态产物组成

热解反应器是热解系统的关键, 反应器的选择与优化是热解技术研究的热点。常规的垃圾热解反应器包括固定床、流化床(鼓泡和循环)和回转窑反应器, 每种反应器都有其独特的反应特性。不同的传热面积、物料停留时间都会影响垃圾热解过程中热解炭、热解油和热解气的产率与品质[19], 同时也会影响污染物的形成与释放。国内外学者针对有机固体废弃物热解气的组成与品质开展了研究, 下文将详细总结各类有机固体废弃物热解气的组成以及利用情况。

1.1 污水污泥热解

污泥的主要特征是氮、硫和磷含量较高。氮来自蛋白质组分及废水净化处理过程中所需的微生物[20], 其中氯含量也相对较高(质量百分数为0.15%)。污泥灰分含量高, 固定碳含量和热值低[21], 污泥灰分富含硅、钙和磷(质量百分数分别为29.1%、12.7%和16.0 %), 高含量的磷使污泥可作为养分回收原料。研究人员开展了大量工作, 以了解污泥及其灰烬作为肥料的潜力[22, 23, 24]。尽管污水污泥仍广泛地再利用于农业领域, 由于污水污泥中铜和锰的浓度较高, 分别为420 mg/kg和840 mg/kg, 会对土壤、植物和农田附近居民的健康造成危害。目前关于金属回收率的调查结果不一[25], 回收这些金属可能会提高污水污泥处理的经济性[26]

污水污泥的热解会产生三种不同的产物(固体、液体和气体部分), 都可以被不同程度地利用。固体残渣污泥炭可以简单地燃烧处理, 根据循环经济原则, 也可将其用作吸附剂[27]或土壤改良剂/肥料[28, 29]。热解油和热解气体可用作化工生产的燃料或原料[30]。由于热解是一个吸热过程, 需要大量的能量, 热解油和热解气通常包含来自进料污泥50%以上的能量, 因此将其用作热解过程的燃料是最实用的方法[31, 32, 33]

表1可知, 污泥热解产生的大部分气体由CO2、H2、CO和CH4组成。文献[32, 35-38]研究了热解温度对这些气体组分含量的影响, 随着热解温度的升高, H2和CO含量通常会增加, CO2含量减少, CH4含量先增加后减少。这些组分的具体含量很大程度上依赖于反应器布置和其他操作参数[37, 38, 39]

表1 污水污泥热解气的组成 Table 1 Composition of sludge pyrolysis gas

文献[33]提到, CO2浓度从350℃时的69%降低到500℃时的32.1%。CO2的释放集中在低温下的第一个热解步骤。文献[40]中木材热解的研究结果表明, CO2是一种主要产物, 而不是二次气相反应的结果。可燃气体(CO、H2和CnHm)的总份额从350℃时的约30%增加到500℃时的65%。较高的温度有利于长链碳氢化合物对C2和C3的高选择性裂解反应[41]

文献[34]的研究结果表明, 当热解温度从400℃升高到800℃时, CO2含量同样呈急剧下降的趋势, CO和H2的含量随着温度的升高而显著增加。当温度超过600℃时, CH4含量首先增加, 然后略有减少[33, 36, 38, 39, 42]。MORGANO等[32]考虑气体中的CO2作为初级热解产物和CO作为含氧化合物的裂化反应的产物; 而FAN等[36]将CO和CO2的形成归因于含氧基团的分解, 例如脱羧和脱羰基反应, 这两种都是生成CO2的途径。此外, 当温度高于600℃时, 由于Boudouard反应, CO2的存在会导致CO含量急剧增加[43, 44], 该反应也可能由热解过程中形成的污泥焦灰分的成分部分催化。SUN等[45]发现, 当热解温度超过600℃时, 氢含量降低, 这主要是由于H2与CO2反应生成CO时, 逆水煤气反应的作用。

除主要气体成分外, 热解气体中还存在其他碳氢化合物, 其总量高达热解气体的9%。值得注意的是, 当热解温度从700℃升高到800℃时, 碳氢化合物(CH4 ~ C4)的含量显著下降, 导致热解气体热值下降。

周阳等[46]利用厨余垃圾制备初沉污泥, 与污水处理的残余污泥混合制备了混合污水污泥, 采用热重红外联用仪评估了含厨余垃圾的混合污水污泥的热解性能及逸出气体特性。傅里叶红外光谱仪主要检测出CH4、CO2、H2O、C═O、CO、SO2六种气态产物及官能团, 其中CO2是主要的气态产物。随着温度的升高, 产物普遍在500 ~ 600℃内达到最大值, 可认为是最佳的热解温度。此外, 陈雅洁[47]采用自行设计的加压热解装置进行污泥加压热解实验, 考察了压力对污泥加压热解产物质量分布的影响。结果表明, 常压热解时焦油产率最高, 是主要的热解产物, 随着压力的升高, 焦油产率呈明显降低趋势, 气体产物产率明显升高, 焦炭产率随压力升高而降低。因此, 热解是一种很有前途的处理污泥的方法, 其优点是能显著降低污泥的质量和体积, 并产生固体残渣(污泥焦), 可用于农业, 改善土壤性质或用于水和空气净化过程。热解过程中还会产生气体和凝析油, 可被大量用于为污泥干燥或为热解过程本身提供热量。针对污泥热解系统的能源利用, 以生产安全的污泥焦为目标, 建议在600 ~ 700℃下对污泥进行热解[34]

1.2 塑料垃圾热解

处理塑料垃圾的方法有机械回收、化学回收、发电(焚烧)和填埋处理。由于塑料具有很好的抗腐蚀能力和不易分解能力, 降解所需的时间很长, 有些废塑料的降解需要数百年[48], 因此填埋是最不利的选择。与焚烧相比, 热解过程不是氧化[55, 56], 可将废弃物转化为可用于发电的气体、固体或液体产品[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]。该过程还可用于将各类生物质和生物废物转化为生物燃料。生物燃料是一种非常重要的运输燃料[64, 65], 有助于减少CO2排放[66, 67]。与焚烧和填埋相比, 热解更适用于处理塑料垃圾, 在获得有能量价值的产品后, 废弃物的体积减少, 对环境的影响显著降低[68]。此外, 一些热解气体的热值很高[69, 70, 71, 72, 73], 有助于缓解天然气的消耗[74], 塑料垃圾产量很大[75, 76], 但仅有0.3%的废塑料使用热解技术处理[77]

根据大量研究, 已知气体热解产物通常含有一定比例含量的烷烃和烯烃(C1 ~ C6)、H2、CO2和CO, 具体组成取决于输入材料和工艺条件[78, 79, 80]。聚乙烯(polyethylene, PE)、聚丙烯(polypropylene, PP)、聚苯乙烯(polystyrene, PS)、聚氯乙烯(polyvinyl chloride, PVC)、聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate, PET)等主要废弃塑料的热解气组成如表2所示。

表2 废塑料的热解气组成[78] Table 2 Pyrolysis gas composition of waste plastics[78]

PVC热解具有最高的热解气体产率。在500 ~ 700℃温度范围内, 除PVC和PS产生的气体外, 其余塑料产生的热解气都比空气密度大。PE热解产生的热解气具有最高平均总热值。PVC热解产生的气体具有高导热性和低普朗特数的特点。

1.3 生物质热解

在燃料适应性和简单性方面, 通过生物质热解过程生成H2比所有现有方式都具有一定的优势[81, 82]。生物质热解过程伴随着挥发物的释放, 包括生物质的化学分解产生的水、永久性气体(冷却时不凝结的气体)、焦油蒸气(冷却时凝结的气体), 以及多孔碳质固体的形成。永久性气体包括H2、CO、CO2和碳氢化合物, 如CH4、C2H4、C2H6[83], 这些产物可以用来产氢、用作化学原料或动力燃料[84]。陈冠益等[85, 86]研究了稻杆、稻壳和木屑在固定床内的热解特性。研究表明以上三种生物质原料热解气的热值在12 000 ~ 15 000 kJ/m3之间, 产气率一般为0.25 ~ 0.45 m3/kg, 其中稻壳的产气率最低; 同时发现热解温度不仅对热解产气率、生物油产率的影响较大, 而且对热解气组分、热值、气流率及半焦产率影响也较显著。同时在自制的固定床反应器内, 考察了秸秆和锯屑的热解行为, 研究了热解产物分布特别是富氢气体的体积分数和产率, 着重研究了5种不同催化剂的催化效果。结果表明, 随着温度的升高, 秸秆和锯屑的热解气产率有明显的升高, 富氢气体的体积分数也有明显的提高。其中Cr2O3显示了最好的催化效果, 在750℃时对应的热解气产率与不使用催化剂相比提高了10%, 富氢气体的体积分数提高了13%。

生物质热解产物也在很大程度上取决于所用原料的组成、水分含量、粒度和操作方式, 其中主要受热解温度和加热速率的影响[87, 88, 89]。该过程的产量和速率因操作条件以及不同原料之间的差异而大不相同[90, 91], 不同生物质热解气的组成如表3所示。

表3 生物质热解气的组成[88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103] Table 3 Composition of biomass pyrolysis gas[88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]

KALINCI等[92]研究表明, 燃料的气体成分和能量含量高度依赖于原料成分。如YIN等[93]研究结果显示, 物料颗粒较小的热解过程会产生更多的H2。H2、CO、CH4和C2H4的生成量随工艺温度的升高而显著增加[94]。如果热解温度较高, 则生成总气体产物的速率较高, 液体产物减少[95]。此外, 由于二次反应的延长, 挥发物停留时间的延长和温度的升高会增加热解炭的形成[96]。更高的加热速率有利于挥发物的快速释放, 改变固体残渣结构, 增加液体和气体部分的产量[97]。催化裂解是一种通过减少液体量以及积极影响油的有机成分质量来提高气体产量的热解手段[98]

生物质中较低的氢含量和较高的氧含量导致其较低的能量含量, 因此提高生物质热解气中H2含量具有一定挑战性[99]

在给定的温度下, 纤维素和半纤维素组分易降解成低分子量化合物, 而木质素比其他木质纤维素材料更容易产氢。高温下较长的停留时间有利于二次热解反应, 从而提高气体产物的产率。调整物料粒度在增加氢气产率方面也有应用。对于不同的热解反应器而言, 由于在流化床反应器中具有更高的加热速率, 因此有更高的热解氢产率。催化剂对热解过程也有重要影响, 镍基催化剂和ZnCl2催化剂在改善气体质量、增加气体产量方面具有巨大的潜力[100]

热解气体在火花点火(spark ignition, SI)发动机应用中具有很好的替代天然气的潜力[101, 102]。这种较低热值的气体燃料可以在双燃料模式下用于柴油发动机, 从而满足大众、公共交通和小规模发电的能源需求[103]

1.4 废轮胎热解

各国生活质量的提高使汽车用户数量不断增长, 汽车的数量也在不断增加[104]。此外, 由于每年都有越来越多的材料和产品需要运输, 卡车的数量也增长迅速, 因此需要处理的废轮胎数量也不断增加。废轮胎橡胶耐磨、防水且耐热、抗电、抗多种化学物质和细菌。由于轮胎具有抗机械损伤、长寿命等特性, 使得其处理变得非常困难。废轮胎需要一百多年才能被微生物分解[105]。此外, 废轮胎垃圾场由于存在火灾风险, 且是蚊子和啮齿动物的栖息地, 与许多疾病密切相关, 对环境和人类健康构成了严重威胁。值得注意的是, 卡车轮胎的质量与其他轮胎相比有很大不同, 它们必须比汽车轮胎更耐用, 因此卡车轮胎的处理会更加困难。

废旧轮胎的管理应遵循以下原则:废物减量化、再利用、能源回收以及最终的填埋有助于减少其对环境的负面影响。1996年, 大约50%的废轮胎在垃圾填埋场, 2010年该数据只有4%[106]。美国有11个州也禁止在垃圾填埋场处置轮胎。有一些州强调使用废轮胎作为燃料补充, 而亚利桑那州等则非常重视通过使用橡胶沥青回收轮胎[107]。SIENKIEWICZ等[108]回顾了欧盟的废轮胎利用方法, 简要描述并比较了现有的方法, 如翻新、能量回收、热解以及产品和材料回收等。

燃烧轮胎会产生烟雾、油和其他有毒物质, 污染大气、土壤、地表水和地下水[108, 109, 110]。但是废轮胎也是燃料的巨大潜力来源[111], 废轮胎热解产生的低分子量气体的燃烧比原料直接燃烧更加清洁, 热解过程也很少或根本不使用空气或氧气, 与焚烧装置相比, 这使得空气排放的控制变得简便, 成本也更低[107]。因此, 考虑到更严格的环境法规、能源危机、燃料消耗以及对热解厂的投资越来越多, 热解对于废轮胎是更合适的处理方法。MARTÍ NEZ等[112]描述了废轮胎的热解参数及其对产品产量和成分的影响, 还详细研究了热解油的组成和性质。然而, 对煤焦和热解气体的关注较少。有相关文献描述了用于废轮胎热解的反应器类型, 但尚未有深入研究热解气的课题[113]

废旧轮胎热解处理会产生四种输出流:气体、液体(油)、固体(炭)和钢。如果橡胶碎片是原材料, 钢不会出现在输出流中, 因为其在热解之前被机械分离[114]。LÓ PEZ等[115]提出了热解产物的另一种分类, 认为可分为五个部分:气体(C1 ~ C4碳氢化合物)、非芳烃液体部分(C5 ~ C10碳氢化合物)、芳烃液体部分(C-10单环芳烃)、焦油(C+11碳氢化合物)和焦炭(固体残渣)。

每种组分的组成取决于所用的热解条件和轮胎组成。GONZÁ LEZ等[116]研究了温度和加热速率对热解产物组成的影响, 升高温度会降低半焦产率, 增加气体产率, 液体油馏分产量在550 ~ 575℃达到最大值, 通过增加加热速率, 获得了类似的变化趋势。关于压力对废轮胎热解产物的影响, 减压或真空可以降低热解过程中的能耗, 提高液体产率, 改善焦炭质量[111]。大多数对废轮胎进行的研究都使用来自后处理厂的轮胎, 这些轮胎是不同品牌、不同类型的混合物[113]。KYARI等[117]研究了轮胎类型对热解过程中获得的产品成分的影响, 研究结果表明, 轮胎的类型和来源对油、气和炭的产量没有显著影响, 但热解气和热解油的成分存在显著差异。

根据所使用的技术和工艺条件, 热解气的产率在原料的百分之几到超过百分之十不等, 废轮胎热解气有很高的热值, 高达84 MJ/m3或42 MJ/kg[118]。闫大海[119]在自行开发的废轮胎处理量10 ~ 40 kg/h的连续式回转窑中试热解装置上进行废轮胎中试热解试验, 着重研究热解温度对热解气组分、平均分子量、热值的影响, 并分析了废轮胎热解气的生成机理和废轮胎中S元素在热解产物中的分布。研究表明, 热解气可视为一种较清洁的燃料, 足以提供热解所需热量。如上所述, 热解气体的产量在很大程度上取决于热解过程的参数。总气体产量随工艺温度的升高而增加。在较高温度下, 热解油蒸气发生热裂解, 因此产生更多气体。加热速率和热解气体停留时间的差异也会对气体的相对产量产生显著影响, 其中较高的热解温度和反应器热区内较长的气体停留时间会将油裂解成气体, 其气体组成如表4所示。

表4 废轮胎热解气的组成[114] Table 4 Pyrolysis gas composition of waste tire[114]

轮胎热解气体主要由CH4和其他碳氢化合物(C2 ~ C6)组成, 此外还有碳氧化物、氢、少量硫和氮化合物。含有四个或更少碳原子的气体如CH4、C2(乙烯、乙烷)、C3(丙烷、丙烯)、C4(丁烷、丁烯等)是轮胎热解主要的产物。这些气体来自橡胶的解聚, 例如苯乙烯丁二烯的二次裂化反应(在较高温度下)[120]。一般来说, 热解气体含有约20%的甲烷(在适当热解条件下可高达40%), 其他碳氢化合物的浓度差异很大。

氢气是废轮胎热解气丰富的成分之一。LÓ PEZ等[120]在550℃获得了22.27% H2。BERRUECO等[121]在热解温度为400 ~ 700℃时, 得到2.6% ~ 17.8%的H2含量。LEUNG等[122]在1 000℃的温度下得到含有约25% H2的热解气体。但是升高温度会增加热解过程的成本。

热解产生的其他气体产物包括COx(CO, CO2)和H2S, 也可能出现其他硫化物, 例如COS和CS2。COx组分来自轮胎中含有的含氧有机化合物和无机化合物, COx浓度通常只有几个百分点。H2S来自硫化橡胶结构中硫链的分解[123], H2S的浓度在1% ~ 4%之间变化[112]。热解气体中也含有NH3和NO2等含氮化合物[124, 125]。单个组分的浓度在很大程度上取决于工艺条件。LEUNG等[122]研究了操作参数对轮胎粉末热解气体产物组成的影响, 随着温度从500℃升高到900℃, CH4的含量增加, 但COx含量减少, 当温度升高到1 000℃时, CH4含量开始减少, COx含量增加, H2含量通常随温度升高而增加, C2组分含量随着温度从500℃升高到800℃先增加后减少, 但C3和C4组分含量随着温度从500℃升高到700℃而增加, 在700℃以上, C3和C4组分含量开始减少。

热解气相产物的组成也会受到反应器类型的影响。回转窑和流化床具有连续运转的特点, 因此得到发展。回转窑热解炉有许多优点, 例如, 倾斜窑的缓慢旋转使废物能够很好地混合, 从而获得均匀的热解产物。此外, 可以轻松调节停留时间, 以提供最佳反应条件[126]。流化床反应器更难操作, 但也有以下优点, 如停留时间长, 有助于二次反应, 温度和加热速率较低[61, 127]。LI等[126]、ANTONIOU等[61]和GALVAGNO等[128]研究了回转窑反应器中废轮胎的热解, 在600℃的温度下, 分别获得了质量分数为18%、10.80%和8.16%的气体产量。RAJ等[129]在流化床反应器中研究了温度、颗粒大小和进料速度对气体产量的影响, 温度变化对气体产率有关键影响, 温度升高到475℃时, CH4和CO的含量增加, 在热解温度从350℃升高至600℃的条件下, H2的产率提高, 物料粒径对气体产量的影响很小。

废轮胎热解气体中的CH4含量低于天然气, 但含有更多的碳氢化合物C2 ~ C6。汽车轮胎的热值约为30 ~ 40 MJ/kg, 和其他轮胎(卡车、摩托车等)的热值差异较大, 汽车轮胎热解气热值介于20 ~ 65 MJ/m3之间, 具体取决于热解气组分和含量[113]。与天然气(热值为35 ~ 40 MJ/m3)相比, 热解气被认为是一种更有前途的燃料。

废轮胎热解过程中得到的气相产物是一种良好的燃料, 需要重点考虑其热值和硫化物的浓度。热解气体的高热值满足工艺的能源要求, 然而, 由于硫是橡胶硫化过程中的主要成分, 热解产物中的硫含量很高[114]。H2S会污染环境, 腐蚀设备, 在高浓度下也具有剧毒性, 此外, 在燃烧过程中很容易氧化为SO2, 会对人类和环境产生危害[114]。因此, 出于环境考虑, 在废轮胎热解时, 应重点考虑硫化物的排放问题。UCAR等[130]研究表明汽车轮胎和卡车轮胎热解气中H2S含量分别为4.18%和0.94%(工艺温度为650℃)。ZHANG等[131]在真空热解温度下(不含任何添加剂)探究H2S的浓度, 480℃时的最大值为33.48 mg/m3, 白云石和石灰石的使用可降低其浓度。温度约为500℃被认为是轮胎热解的最佳选择, 且热解气中的H2S浓度是一个尤其值得注意的问题。

废轮胎热解气体最常见的用途是燃烧, 以提供热解过程所需的能量。热解焓(最广泛使用的是固定床反应器)约为270 J/g, 热解气体的总热值为2 900 J/g, 为每单位质量橡胶轮胎的能量。因此, 该过程有足够的能量满足反应要求, 并补偿热损失或用于其他目的[132]。文献中关于热解气体燃烧产生的污染物的信息非常有限。然而, 若考虑轮胎热解厂的投资建设, 这是一个十分重要的问题, 这是由于在不同类型的垃圾焚烧厂中, 烟气净化的成本可能是最高的。热解气体的H2S浓度相对较高, 在燃烧过程中容易氧化为SO2。二噁英和呋喃的浓度为0.006 3 ng/Nm3, 有必要安装酸性气体净化系统[132]。轮胎热解厂都应考虑烟气净化装置, 以确保达到所有健康和安全要求。市面上有很多不同的烟气净化方法, 还有一些很有前途的实验室规模的净化方法, 可以应用于热解装置。采用何种方法取决于需要清除的污染物类型、监管限制和成本。

1.5 城市生活垃圾热解

与其他垃圾相比, 城市生活垃圾的成分更为复杂。城市生活垃圾的主要成分是有机垃圾、纸张、塑料、玻璃和金属。城市生活垃圾的有机组成主要包括食物垃圾、烹饪垃圾和来自住宅、餐馆、咖啡馆、餐厅和市场的残留物。这类废物具有较高的含水率和较高的可生化性。城市固体废物的第二大来源是纸张, 可分为印刷纸(包括期刊、书籍和杂志等)、硬纸板和厕纸三大类。塑料也是城市生活垃圾的一个重要组分, 主要来源是渔业用品和日常塑料垃圾。玻璃和金属也是城市生活垃圾的产生来源。城市固体废物包括不同种类的金属, 例如喷雾罐、铝烤盘、烹调油罐、锡制、钢或铝制的罐头, 以及清洁用品瓶。

除了传统的焚烧和填埋方法外, 城市垃圾还采用了不同的废物处理、管理和处置方法。目前, 高效、环保、经济的垃圾热解处理技术正受到人们的广泛关注。MSW热解可以防止多氯代二苯并二噁英/呋喃的形成, 并减少NOx的形成, 是垃圾焚烧发电应用最有前景的技术之一。

近年来, 热化学技术已被广泛用于MSW处理, 其不仅为MSW处理提供解决方案, 而且还为能源和增值产品回收提供解决方案[133, 134]。城市生活垃圾热解是在缺氧环境和高温(300 ~ 700℃)下对城市生活垃圾的有机成分进行热裂解的过程, 产生热解油、合成气和焦炭[135]。与直接焚烧相比, 热解产生的二噁英、NOx和SO2更少。热解装置的处理量更小, 可用于分散的城市生活垃圾管理方案[136, 137]。热解产生的气体产品通常比气化产生的合成气具有更高的能量[138]。此外, 液体产物还能用作运输燃料[139]。然而, 热解技术还远未成熟, 热解装置的运行可能会受到高含水量原料和原料性质显著不均匀性的影响[140]。产品中存在焦油、碱金属和碱土金属, 对下游设备造成不利影响, 如下游管道堵塞和设备腐蚀[141]

表5可知, MSW热解产生的气体主要由CO2、H2、CO和CH4组成[142]。关于城市垃圾的催化热解研究, HE等[143]演示了以白云石为催化剂热解城市生活垃圾的过程, 气体产量摩尔分数变化范围为47% ~ 67%。如表6所示, 白云石的使用对热解气的产率和组成有很大的影响, 温度越高, 产量越高。由于惰性气氛, 热解过程中产生的NOx和SOx含量较低, 因此与传统的垃圾焚烧炉相比, 热解过程可以获得更高的能量[144]。此外, 为获得更高品质的热解产物, 生物质单独热解研究朝着与其他富氢废弃物如废轮胎或废塑料等混合催化热解方向发展。为此, 陈家威[145]以城市生活垃圾典型组分厨余垃圾和废轮胎为研究对象, 利用傅里叶变换红外光谱仪检测了厨余垃圾和废轮胎混合热解过程生成的气相产物。研究结果表明, 厨余垃圾和废轮胎混合热解一定程度上促进了烃类(CnHm)的生成, 抑制了NO和NH3的生成。

表5 MSW热解气体的组成和热值[142] Table 5 Composition and calorific value of MSW pyrolysis gas[142]
表6 催化煅烧白云石和沸石、反应器温度对MSW热解产物浓度的影响[146] Table 6 Effect of catalytic calcination of dolomite and zeolite and reactor temperature on pyrolysis product concentration of MSW[146]
1.6 医疗废弃物热解

随着全球人口的增长和经济的稳步增长, 人们的医疗保健需求和消费也在逐年显著增加。越来越多的医院、诊所和其他医疗机构导致了医疗废物的大量产生。据统计, 美国卫生系统每年产生约65万t医疗废物。城市和农村地区的医疗废物数量快速增长, 年增长率约为20%[147, 148]。在我国, 医疗固体废物是指医疗卫生机构在医疗、预防、保健等相关活动中产生的具有直接或间接感染、毒性等危险性的固体废物[149]。据世界卫生组织估计, 这些医疗废物中有20%是有害物质, 可能含有传染性、毒性或放射性物质[150]。因此, 从环境保护和疾病防控的角度加强医疗废物的有效无害化处理具有重要意义。

鉴于医疗废物的传染性和危害性, 世界各国逐渐重视医疗废物的处置[151]。随后, 出现了一系列与医疗废物处置相关的技术手段, 如化学消毒、高压灭菌器、卫生填埋、焚烧、热解、等离子体等[152, 153]。在上述技术中, 焚烧是技术上和经济上最可行的选择, 适用于所有类型的医疗废物, 具有显著的减容减量和彻底灭菌效果[154, 155, 156]。该方法已在欧美等发达国家得到广泛应用, 未来将成为发展中国家处理医疗废物的主流方法。但是在焚烧医疗废物的过程中会产生有机废物, 如多氯联苯和二苯并呋喃、多环芳烃、无机排放物和含有有毒金属的灰烬, 从而对环境造成二次污染, 并威胁人类健康[157, 158]。与传统的垃圾焚烧相比, 垃圾的热化学转化具有更大的优势, 能提高能效、产生增值产品和改善污染控制[159]。热化学转化的中间产物能适用于从优质燃料到精细化学品的广泛应用[160]。与焚烧炉相比, 较低的工作温度还能降低碱挥发、结垢、结渣和床层结块的风险[161]。热解作为热化学转化的一种, 利用了医疗废物中有机成分的不稳定性, 原料在厌氧或低氧条件下高温热解, 产生气体产物, 然后冷凝并转化为液体燃料, 液体产品的性能与商用运输燃料非常接近, 因此, 在升级和改造后, 可以将其用作替代燃料[162, 163]。此外, 热解后产生的一些气体和固体产品可以被作为能源使用, 因此具有更高的市场价值[164]。QIN等[165]研究了主要由聚苯乙烯和聚丙烯组成的医用塑料废物(医用塑料瓶和塑料输液袋的混合物)的热降解, 研究表明, 在惰性气氛中, 医用塑料垃圾约在300℃开始降解, 并在400℃附近达到最大降解率, 主要产生苯乙烯、苯、甲苯和少量C1 ~ C4脂肪烃等初始热解产物。为了获得典型医疗废物热解过程中的动力学参数, QIN等[166]还在微流化床反应器中对典型医疗废物进行了热解, 通过质谱仪分析典型医疗废物热解产生的气体, 仅观察到H2、CH4、C2H2、C2H4、C2H6、C3H6、C3H8和C4H4。DASH等[167]研究了废注射器在400 ~ 550℃的温度范围内的热解, 在450℃时液体产物产率最高(质量分数为83%), 通过气相色谱-质谱联用仪分析发现热解油含有约25种碳链长度为C10 ~ C20的化合物, 热解油的物理性质接近柴油和汽油的混合物。

FANG等[168]随机抽取一些经过消毒和干燥的医疗固体废物进行热解处理, 对热解气成分和体积百分比多次测量后进行平均, 如表7所示。结果表明, 热解气体主要由H2、CO和多种可燃有机气体组成, 除去不可燃的CO2, 可燃组分的总比例为83.22%。根据各组分体积百分比, 标准条件下获得的热值约为46.2 MJ/Nm3, 高于国家标准规定的天然气的热值35.6 MJ/Nm3[169]。这部分气体可直接用于锅炉加热或燃气轮机发电。

表7 500℃下医疗废弃物热解气的组成[168] Table 7 Composition of medical waste pyrolysis gas at 500℃[168]
2 结语

热解是有机固体废弃物处理方法中较好的一种方法, 在缺氧环境中的热降解过程使产物具有资源能源回收价值, 不仅降低了环境污染, 而且将资源利用最大化。国内外学者多是选取一种或几种典型固体废弃物热解进行试验研究, 但对混合有机固体废弃物热解的研究较少, 而且对热解气态产物的资源化利用也少有系统的分析。

有机固体废弃物热解气体组分主要为CO2、CO、H2和CH4, 其余的热解气体由碳氢化合物和其他少量化合物组成。热解气产物组成及含量受到温度、停留时间、升温速率、催化剂、含水率、原料组成、粒径等诸多因素的影响。在适当的条件下进行热解, 不仅可以对固体废弃物减量, 还可以获得有价值的液体产品、优质的煤焦(生产活性炭的原材料)、气体燃料, 可为热解过程提供足够的能量, 并且可以额外产生电力。然而, 目前相关研究仍面临着一些挑战, 如热解尾气污染物(如二噁英)问题, 热解装置及运行维护的经济可行性问题等。因此, 将有机固体废弃物热解气资源高效清洁利用将是未来研究的主要课题。

参考文献
[1] NOBRE C, ŞEN A, DURÃO L, et al. Low-temperature pyrolysis products of waste cork and lignocellulosic biomass: product characterization[J]. Biomass conversion and biorefinery, 2023, 13(3): 2267-2277. DOI: 10.1007/s13399-021-01300-8. [本文引用:1]
[2] GUERRERO L A, MAAS G, HOGLAND W. Solid waste management challenges for cities in developing countries[J]. Waste management, 2013, 33(1): 220-232. DOI: 10.1016/j.wasman.2012.09.008. [本文引用:1]
[3] BURNLEY S J. A review of municipal solid waste composition in the United Kingdom[J]. Waste management, 2007, 27(10): 1274-1285. DOI: 10.1016/j.wasman.2006.06.018. [本文引用:1]
[4] ALI G, NITIVATTANANON V, ABBAS S, et al. Green waste to biogas: renewable energy possibilities for Thailand 's green markets[J]. Renewable and sustainable energy reviews, 2012, 16(7): 5423-5429. DOI: 10.1016/j.rser.2012.05.021. [本文引用:1]
[5] STEHLÍK P. Contribution to advances in waste-to-energy technologies[J]. Journal of cleaner production, 2009, 17(10): 919-931. DOI: 10.1016/j.jclepro.2009.02.011. [本文引用:1]
[6] KALYANI K A, PANDEY K K. Waste to energy status in India: a short review[J]. Renewable and sustainable energy reviews, 2014, 31: 113-120. DOI: 10.1016/j.rser.2013.11.020. [本文引用:1]
[7] BAJIĆ B Ž, DODIĆ S N, VUČUROVIĆ D G, et al. Waste-to-energy status in Serbia[J]. Renewable and sustainable energy reviews, 2015, 50: 1437-1444. DOI: 10.1016/j.rser.2015.05.079. [本文引用:1]
[8] ZHAO X G, JIANG G W, LI A, et al. Economic analysis of waste-to-energy industry in China[J]. Waste management, 2016, 48: 604-618. DOI: 10.1016/j.wasman.2015.10.014. [本文引用:1]
[9] RADA E C. Energy from municipal solid waste[J]. WIT transactions on ecology and the environment, 2014, 190: 945-957. [本文引用:1]
[10] PANT D, VAN BOGAERT G, DIELS L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource technology, 2010, 101(6): 1533-1543. DOI: 10.1016/j.biortech.2009.10.017. [本文引用:1]
[11] Ministry of Agriculture FaRA. Energy yields from a farm-based anaerobic digestion system[EB/OL]. [2022-05-10]. https://www.ontario.ca/page/energy-yields-farm-based-anaerobic-digestion-system. [本文引用:1]
[12] SURENDRA K C, TAKARA D, HASHIMOTO A G, et al. Biogas as a sustainable energy source for developing countries: opportunities and challenges[J]. Renewable and sustainable energy reviews, 2014, 31: 846-859. DOI: 10.1016/j.rser.2013.12.015. [本文引用:1]
[13] TAMBONE F, GENEVINI P, D'IMPORZANO G, et al. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW[J]. Bioresource technology, 2009, 100(12): 3140-3142. DOI: 10.1016/j.biortech.2009.02.012. [本文引用:1]
[14] PIVATO A, VANIN S, RAGA R, et al. Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment[J]. Waste management, 2016, 49: 378-389. DOI: 10.1016/j.wasman.2015.12.009. [本文引用:1]
[15] PAVLAS M, TOUŠ M, KLIMEK P, et al. Waste incineration with production of clean and reliable energy[J]. Clean technologies and environmental policy, 2011, 13(4): 595-605. DOI: 10.1007/s10098-011-0353-5. [本文引用:1]
[16] HIGMAN C. Gasification[M]//MILLER B G, TILLMAN D A. Combustion Engineering Issues for Solid Fuel Systems. Amsterdam: Academic Press, 2008: 423-468. DOI: 10.1016/B978-0-12-373611-6.00011-2. [本文引用:1]
[17] KUMAR A, SAMADDER S R. A review on technological options of waste to energy for effective management of municipal solid waste[J]. Waste management, 2017, 69: 407-422. DOI: 10.1016/j.wasman.2017.08.046. [本文引用:1]
[18] AHMAD A A, ZAWAWI N A, KASIM F H, et al. Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation[J]. Renewable and sustainable energy reviews, 2016, 53: 1333-1347. DOI: 10.1016/j.rser.2015.09.030. [本文引用:1]
[19] HASAN M M, RASUL M G, KHAN M M K, et al. Energy recovery from municipal solid waste using pyrolysis technology: a review on current status and developments[J]. Renewable and sustainable energy reviews, 2021, 145: 111073. DOI: 10.1016/j.rser.2021.111073. [本文引用:1]
[20] FONTS I, GEA G, AZUARA M, et al. Sewage sludge pyrolysis for liquid production: a review[J]. Renewable and sustainable energy reviews, 2012, 16(5): 2781-2805. DOI: 10.1016/j.rser.2012.02.070. [本文引用:1]
[21] AGRAFIOTI E, BOURAS G, KALDERIS D, et al. Biochar production by sewage sludge pyrolysis[J]. Journal of analytical and applied pyrolysis, 2013, 101: 72-78. DOI: 10.1016/j.jaap.2013.02.010. [本文引用:1]
[22] ADAM C, PEPLINSKI B, MICHAELIS M, et al. Thermochemical treatment of sewage sludge ashes for phosphorus recovery[J]. Waste management, 2009, 29(3): 1122-1128. DOI: 10.1016/j.wasman.2008.09.011. [本文引用:1]
[23] DONATELLO S, CHEESEMAN C R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review[J]. Waste management, 2013, 33(11): 2328-2340. DOI: 10.1016/j.wasman.2013.05.024. [本文引用:1]
[24] LI R D, YIN J, WANG W Y, et al. Transformation of phosphorus during drying and roasting of sewage sludge[J]. Waste management, 2014, 34(7): 1211-1216. DOI: 10.1016/j.wasman.2014.03.022. [本文引用:1]
[25] BABEL S, DEL MUNDO DACERA D. Heavy metal removal from contaminated sludge for land application: a review[J]. Waste management, 2006, 26(9): 988-1004. DOI: 10.1016/j.wasman.2005.09.017. [本文引用:1]
[26] WESTERHOFF P, LEE S, YANG Y, et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from U. S. wastewater treatment plants nationwide[J]. Environmental science & technology, 2015, 49(16): 9479-9488. DOI: 10.1021/es505329q. [本文引用:1]
[27] SMITH K M, FOWLER G D, PULLKET S, et al. Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications[J]. Water research, 2009, 43(10): 2569-2594. DOI: 10.1016/j.watres.2009.02.038. [本文引用:1]
[28] SOUSA A A T C, FIGUEIREDO C C. Sewage sludge biochar: effects on soil fertility and growth of radish[J]. Biological agriculture & horticulture, 2016, 32(2): 127-138. DOI: 10.1080/01448765.2015.1093545. [本文引用:1]
[29] FARIA W M, FIGUEIREDO C C D, COSER T R, et al. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment[J]. Archives of agronomy and soil science, 2018, 64(4): 505-519. DOI: 10.1080/01448765.2015.1093545. [本文引用:1]
[30] DOMÍNGUEZ A, MENÉNDEZ J A, INGUANZO M, et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource technology, 2006, 97(10): 1185-1193. DOI: 10.1016/j.biortech.2005.05.011. [本文引用:1]
[31] KARACA C, SÖZEN S, ORHON D, et al. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery[J]. Waste management, 2018, 78: 217-226. DOI: 10.1016/j.wasman.2018.05.034. [本文引用:1]
[32] MORGANO M T, LEIBOLD H, RICHTER F, et al. Screw pyrolysis technology for sewage sludge treatment[J]. Waste management, 2018, 73: 487-495. DOI: 10.1016/j.wasman.2017.05.049. [本文引用:2]
[33] 侯宝峰. 污泥热解技术的研究进展[J]. 城镇供水, 2017, 198(06): 73-77. DOI: 10.14143/j.cnki.czgs.2017.06.019. [本文引用:3]
[34] MOŠKO J, POHOŘELÝ M, SKOBLIA S, et al. Detailed analysis of sewage sludge pyrolysis gas: effect of pyrolysis temperature[J]. Energies, 2020, 13(16): 4087. DOI: 10.3390/en13164087. [本文引用:2]
[35] GAO N B, KAMRAN K, QUAN C, et al. Thermochemical conversion of sewage sludge: a critical review[J]. Progress in energy and combustion science, 2020, 79: 100843. DOI: 10.1016/j.pecs.2020.100843. [本文引用:1]
[36] FAN H J, ZHOU H, WANG J. Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor[J]. Energy conversion and management, 2014, 88: 1151-1158. DOI: 10.1016/j.enconman.2014.05.043. [本文引用:2]
[37] INGUANZO M, DOMÍNGUEZ A, MENÉNDEZ J A, et al. On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions[J]. Journal of analytical and applied pyrolysis, 2002, 63(1): 209-222. DOI: 10.1016/S0165-2370(01)00155-3. [本文引用:1]
[38] GAO N B, QUAN C, LIU B L, et al. Continuous pyrolysis of sewage sludge in a screw-feeding reactor: products characterization and ecological risk assessment of heavy Metals[J]. Energy & fuels, 2017, 31(5): 5063-5072. DOI: 10.1021/acs.energyfuels.6b03112. [本文引用:2]
[39] JARAMILLO-ARANGO A, FONTS I, CHEJNE F, et al. Product compositions from sewage sludge pyrolysis in a fluidized bed and correlations with temperature[J]. Journal of analytical and applied pyrolysis, 2016, 121: 287-296. DOI: 10.1016/j.jaap.2016.08.008. [本文引用:2]
[40] ANCA-COUCE A, MEHRABIAN R, SCHARLER R, et al. Kinetic scheme of biomass pyrolysis considering secondary charring reactions[J]. Energy conversion and management, 2014, 87: 687-696. DOI: 10.1016/j.enconman.2014.07.061. [本文引用:1]
[41] SADRAMELI S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review[J]. Fuel, 2015, 140: 102-115. DOI: 10.1016/j.fuel.2014.09.034. [本文引用:1]
[42] SUN Y, JIN B S, HUANG Y J, et al. Distribution and characteristics of products from pyrolysis of sewage sludge[J]. Advanced materials research, 2013, 726-731: 2885-2893. DOI: 10.4028/www.scientific.net/AMR.726-731.2885. [本文引用:1]
[43] LEDAKOWICZ S, STOLAREK P, MALINOWSKI A, et al. Thermochemical treatment of sewage sludge by integration of drying and pyrolysis/autogasification[J]. Renewable and sustainable energy reviews, 2019, 104: 319-327. DOI: 10.1016/j.rser.2019.01.018. [本文引用:1]
[44] NOWICKI L, LEDAKOWICZ S. Comprehensive characterization of thermal decomposition of sewage sludge by TG-MS[J]. Journal of analytical and applied pyrolysis, 2014, 110: 220-228. DOI: 10.1016/j.jaap.2014.09.004. [本文引用:1]
[45] SUN Y, JIN B S, HUANG Y J, et al. Distribution and characteristics of products from pyrolysis of sewage sludge[C]//Proceedings of the 2nd International Conference on Energy and Environmental Protection. Guilin: ICEEP, 2013. DOI: 10.4028/www.scientific.net/AMR.726-731.2885. [本文引用:1]
[46] 周阳, 金保昇. 含厨余垃圾的混合污水污泥热解性能及逸出气体分析[J]. 环境工程, 2022, 40(10): 80-87, 175. DOI: 10.13205/j.hjgc.202210011. [本文引用:1]
[47] 陈雅洁. 城市污水污泥加压热解及产物特性研究[D]. 大连: 大连理工大学, 2018. [本文引用:1]
[48] 李铠滃, 徐培文. 浅谈环境保护工程中废弃塑料处理技术[J]. 资源再生, 2022, 239(06): 54-57. [本文引用:1]
[49] JURSOVÁ S, PUSTEJOVSKÁ P, BROŽOVÁ S. Energy exploitation of industrial waste[C]// METAL 2013 - 22nd International Conference on Metallurgy and Materials, Conference Proceedings, Brno, Czech Republic: TANGER Ltd. , 2013: 1785-1789. [本文引用:1]
[50] HONUS S, JUCHELKOVÁ D. Mathematical models of combustion, convection and heat transfer in experimental thermic device and verification[J]. Tehnicki vjesnik, 2014, 21(1): 115-122. [本文引用:1]
[51] KOCA H, KOCKAR O M, KOCA S. Desulphurization of lignites by slow, fast, and flash pyrolysis and high intensity dry magnetic separation[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2007, 29(16): 1457-1470. DOI: 10.1080/00908310600625772. [本文引用:1]
[52] JASMINSKÁ N, BRESTOVIČ T, ČARNOGURSKÁ M. The effect of temperature pyrolysis process of used tires on the quality of output products[J]. Acta mechanica et automatica, 2013, 7(1): 20-25. DOI: 10.2478/ama-2013-0004. [本文引用:1]
[53] NSAFUL F, GÖRGENS J F, KNOETZE J H. Comparison of combustion and pyrolysis for energy generation in a sugarcane mill[J]. Energy conversion and management, 2013, 74: 524-534. DOI: 10.1016/j.enconman.2013.07.024. [本文引用:1]
[54] ALSTON S M, CLARK A D, ARNOLD J C, et al. Environmental impact of pyrolysis of mixed WEEE plastics part 1: experimental pyrolysis data[J]. Environmental science & technology, 2011, 45(21): 9380-9385. DOI: 10.1021/es201664h. [本文引用:1]
[55] HENKEL C, MULEY P D, ABDOLLAHI K K, et al. Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L. ) biomass in an inductively heated reactor[J]. Energy conversion and management, 2016, 109: 175-183. DOI: 10.1016/j.enconman.2015.12.013. [本文引用:2]
[56] MIKULČIĆ H, VON BERG E, VUJANOVIĆ M, et al. Numerical study of co-firing pulverized coal and biomass inside a cement calciner[J]. Waste management & research: the journal for a sustainable circular economy, 2014, 32(7): 661-669. DOI: 10.1177/0734242X14538309. [本文引用:2]
[57] BARTOŇOVÁ L. Unburned carbon from coal combustion ash: an overview[J]. Fuel processing technology, 2015, 134: 136-158. DOI: 10.1016/j.fuproc.2015.01.028. [本文引用:1]
[58] ONAY Ö. The catalytic Co-pyrolysis of waste tires and pistachio seeds[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2014, 36(18): 2070-2077. DOI: 10.1080/15567036.2013.791900. [本文引用:1]
[59] ÇEPELIOĞULLAR Ö, PÜTÜN A E. Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor[J]. Journal of analytical and applied pyrolysis, 2014, 110: 363-374. DOI: 10.1016/j.jaap.2014.10.002. [本文引用:1]
[60] YORGUN S, YILDIZ D. Slow pyrolysis of paulownia wood: effects of pyrolysis parameters on product yields and bio-oil characterization[J]. Journal of analytical and applied pyrolysis, 2015, 114: 68-78. DOI: 10.1016/j.jaap.2015.05.003. [本文引用:1]
[61] ANTONIOU N, ZABANIOTOU A. Experimental proof of concept for a sustainable End of Life Tyres pyrolysis with energy and porous materials production[J]. Journal of cleaner production, 2015, 101: 323-336. DOI: 10.1016/j.jclepro.2015.03.101. [本文引用:3]
[62] HUANG H, TANG L, WU C Z. Characterization of gaseous and solid product from thermal plasma pyrolysis of waste rubber[J]. Environmental science & technology, 2003, 37(19): 4463-4467. DOI: 10.1021/es034193c. [本文引用:1]
[63] CONESA J A, MARTÍN-GULLÓN I, FONT R, et al. Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor[J]. Environmental science & technology, 2004, 38(11): 3189-3194. DOI: 10.1021/es034608u. [本文引用:1]
[64] ZHANG K, PEI Z J, WANG D H. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review[J]. Bioresource technology, 2016, 199: 21-33. DOI: 10.1016/j.biortech.2015.08.102. [本文引用:1]
[65] CHEN W H, LIN B J, HUANG M Y, et al. Thermochemical conversion of microalgal biomass into biofuels: a review[J]. Bioresource technology, 2015, 184: 314-327. DOI: 10.1016/j.biortech.2014.11.050. [本文引用:1]
[66] MILANO J, ONG H C, MASJUKI H H, et al. Microalgae biofuels as an alternative to fossil fuel for power generation[J]. Renewable and sustainable energy reviews, 2016, 58: 180-197. DOI: 10.1016/j.rser.2015.12.150. [本文引用:1]
[67] SADEGHINEZHAD E, KAZI S N, SADEGHINEJAD F, et al. A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement[J]. Renewable and sustainable energy reviews, 2014, 30: 29-44. DOI: 10.1016/j.rser.2013.09.022. [本文引用:1]
[68] ALSTON S M, ARNOLD J C. Environmental impact of pyrolysis of mixed WEEE plastics part 2: life cycle assessment[J]. Environmental science & technology, 2011, 45(21): 9386-9932. DOI: 10.1021/es2016654. [本文引用:1]
[69] LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Pyrolysis of municipal plastic wastes II: influence of raw material composition under catalytic conditions[J]. Waste management, 2011, 31(9/10): 1973-1983. DOI: 10.1016/j.wasman.2011.05.021. [本文引用:1]
[70] CHEN D Z, YIN L J, WANG H, et al. Reprint of: pyrolysis technologies for municipal solid waste: a review[J]. Waste management, 2015, 37: 116-136. DOI: 10.1016/j.wasman.2015.01.022. [本文引用:1]
[71] AL-SALEM S M, LETTIERI P, BAEYENS J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals[J]. Progress in energy and combustion science, 2010, 36(1): 103-129. DOI: 10.1016/j.pecs.2009.09.001. [本文引用:1]
[72] PARASCHIV M, KUNCSER R, TAZEROUT M, et al. New energy value chain through pyrolysis of hospital plastic waste[J]. Applied thermal engineering, 2015, 87: 424-433. DOI: 10.1016/j.applthermaleng.2015.04.070. [本文引用:1]
[73] DÍEZ C, MARTÍNEZ O, CALVO L F, et al. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered[J]. Waste management, 2004, 24(5): 463-469. DOI: 10.1016/j.wasman.2003.11.006. [本文引用:1]
[74] VIHAR R, SELJAK T, RODMAN OPREŠNIK S, et al. Combustion characteristics of tire pyrolysis oil in turbo charged compression ignition engine[J]. Fuel, 2015, 150: 226-235. DOI: 10.1016/j.fuel.2015.01.087. [本文引用:1]
[75] 李晔, 许文. 中国塑料制品市场分析与发展趋势[J]. 化学工业, 2021, 39(04): 37-43. [本文引用:1]
[76] Plastics Europe. An analysis of European plastics production, demand and waste data: plastics - the Facts 2021[EB/OL]. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/. [本文引用:1]
[77] WU C F, NAHIL M A, MISKOLCZI N, et al. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes[J]. Environmental science & technology, 2014, 48(1): 819-826. DOI: 10.1021/es402488b. [本文引用:1]
[78] SHARMA B K, MOSER B R, VERMILLION K E, et al. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags[J]. Fuel processing technology, 2014, 122: 79-90. DOI: 10.1016/j.fuproc.2014.01.019. [本文引用:1]
[79] IMAM T, CAPAREDA S. Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures[J]. Journal of analytical and applied pyrolysis, 2012, 93: 170-177. DOI: 10.1016/j.jaap.2011.11.010. [本文引用:1]
[80] AHMED I, GUPTA A K. Syngas yield during pyrolysis and steam gasification of paper[J]. Applied energy, 2009, 86(9): 1813-1821. DOI: 10.1016/j.apenergy.2009.01.025. [本文引用:1]
[81] BIČÁKOVÁ O, STRAKA P. Production of hydrogen from renewable resources and its effectiveness[J]. International journal of hydrogen energy, 2012, 37(16): 11563-11578. DOI: 10.1016/j.ijhydene.2012.05.047. [本文引用:1]
[82] NAVARRO R M, SÁNCHEZ-SÁNCHEZ M C, ALVAREZ-GALVAN M C, et al. Hydrogen production from renewable sources: biomass and photocatalytic opportunities[J]. Energy & environmental science, 2009, 2(1): 35-54. DOI: 10.1039/B808138G. [本文引用:1]
[83] BALAT M. Mechanisms of thermochemical biomass conversion processes. part 1: reactions of pyrolysis[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2008, 30(7): 620-635. DOI: 10.1080/15567030600817258. [本文引用:1]
[84] LAM S S, RUSSELL A D, LEE C L, et al. Microwave-heated pyrolysis of waste automotive engine oil: influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil[J]. Fuel, 2012, 92(1): 327-339. DOI: 10.1016/j.fuel.2011.07.027. [本文引用:1]
[85] 张秀梅, 陈冠益, 孟祥梅, . 催化热解生物质制取富氢气体的研究[J]. 燃料化学学报, 2004, 32(4): 446-449. DOI: 10.3969/j.issn.0253-2409.2004.04.012. [本文引用:1]
[86] 陈冠益, 方梦祥, 骆仲泱, . 生物质固定床热解特性的试验研究与分析[J]. 太阳能学报, 1999, 20(2): 122-129. DOI: 10.3321/j.issn:0254-0096.1999.02.003. [本文引用:1]
[87] THUNMAN H, NIKLASSON F, JOHNSSON F, et al. Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds[J]. Energy & fuels, 2001, 15(6): 1488-1497. DOI: 10.1021/ef010097q. [本文引用:1]
[88] GOMEZ-BAREA A, NILSSON S, BARRERO F V, et al. Devolatilization of wood and wastes in fluidized bed[J]. Fuel processing technology, 2010, 91(11): 1624-1633. DOI: 10.1016/j.fuproc.2010.06.011. [本文引用:1]
[89] LI S G, XU S P, LIU S Q, et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas[J]. Fuel processing technology, 2004, 85(8/10): 1201-1211. DOI: 10.1016/j.fuproc.2003.11.043. [本文引用:1]
[90] GÓMEZ-BAREA A, LECKNER B. Modeling of biomass gasification in fluidized bed[J]. Progress in energy and combustion science, 2010, 36(4): 444-509. DOI: 10.1016/j.pecs.2009.12.002. [本文引用:1]
[91] BOROSON M L, HOWARD J B, LONGWELL J P, et al. Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars[J]. AIChE journal, 1989, 35(1): 120-128. DOI: 10.1002/aic.690350113. [本文引用:1]
[92] KALINCI Y, HEPBASLI A, DINCER I. Efficiency assessment of an integrated gasifier/boiler system for hydrogen production with different biomass types[J]. International journal of hydrogen energy, 2010, 35(10): 4991-5000. DOI: 10.1016/j.ijhydene.2009.08.079. [本文引用:1]
[93] YIN R Z, LIU R H, WU J K, et al. Influence of particle size on performance of a pilot-scale fixed-bed gasification system[J]. Bioresource technology, 2012, 119: 15-21. DOI: 10.1016/j.biortech.2012.05.085. [本文引用:1]
[94] SEPTIEN S, VALIN S, DUPONT C, et al. Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000-1400°C)[J]. Fuel, 2012, 97: 202-210. DOI: 10.1016/j.fuel.2012.01.049. [本文引用:1]
[95] DOMÍNGUEZ A, FERNÁNDEZ Y, FIDALGO B, et al. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J]. Chemosphere, 2008, 70(3): 397-403. DOI: 10.1016/j.chemosphere.2007.06.075. [本文引用:1]
[96] FERNÁNDEZ Y, ARENILLAS A, DÍEZ M A, et al. Pyrolysis of glycerol over activated carbons for syngas production[J]. Journal of analytical and applied pyrolysis, 2009, 84(2): 145-150. DOI: 10.1016/j.jaap.2009.01.004. [本文引用:1]
[97] MENÉNDEZ J A, DOMÍNGUEZ A, FERNÁNDEZ Y, et al. Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls[J]. Energy & fuels, 2007, 21(1): 373-378. DOI: 10.1021/ef060331i. [本文引用:1]
[98] DOMÍNGUEZ A, MENÉNDEZ J A, INGUANZO M, et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges[J]. Journal of chromatography A, 2003, 1012(2): 193-206. DOI: 10.1016/S0021-9673(03)01176-2. [本文引用:1]
[99] BALAT H, KIRTAY E. Hydrogen from biomass - Present scenario and future prospects[J]. International journal of hydrogen energy, 2010, 35(14): 7416-7426. DOI: 10.1016/j.ijhydene.2010.04.137. [本文引用:1]
[100] UDDIN N, DAUD W M A W, ABBAS H F. Effects of pyrolysis parameters on hydrogen formations from biomass: a review[J]. RSC advances, 2014, 4(21): 10467-10490. DOI: 10.1039/c3ra43972k. [本文引用:1]
[101] HOSSAIN A K, DAVIES P A. Pyrolysis liquids and gases as alternative fuels in internal combustion engines - A review[J]. Renewable and sustainable energy reviews, 2013, 21: 165-189. DOI: 10.1016/j.rser.2012.12.031. [本文引用:1]
[102] SHUDO T, NAGANO T, ROBAVASHI M. Combustion characteristics of waste-pyrolysis gases in an internal combustion engine[J]. International journal of automotive technology, 2003, 4(1): 1-8. [本文引用:1]
[103] CHINTALA V, SUBRAMANIAN K A. A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode[J]. Renewable and sustainable energy reviews, 2017, 70: 472-491. DOI: 10.1016/j.rser.2016.11.247. [本文引用:1]
[104] European tyre and rubber manufacturers association, European tyre & rubber industry Statistics 2021[EB/OL]. [2021-12-03]. https://www.etrma.org/library/european-tyre-and-rubber-industry-statistics-2021/. [本文引用:1]
[105] TORRETTA V, RADA E C, RAGAZZI M, et al. Treatment and disposal of tyres: two EU approaches. A review[J]. Waste management, 2015, 45: 152-160. DOI: 10.1016/j.wasman.2015.04.018. [本文引用:1]
[106] DABIC-MILETIC S, SIMIC V, KARAGOZ S. End-of-life tire management: a critical review[J]. Environmental science and pollution research, 2021, 28(48): 68053-68070. DOI: 10.1007/s11356-021-16263-6. [本文引用:1]
[107] Integrated Waste Management Board. Technology evaluation and economic analysis of waste tire pyrolysis, gasification, and liquefaction[R]. Sacramento: Integrated Waste Management Board, 2006: 1-97. [本文引用:2]
[108] SIENKIEWICZ M, KUCINSKA-LIPKA J, JANIK H, et al. Progress in used tyres management in the European Union: a review[J]. Waste management, 2012, 32(10): 1742-1751. DOI: 10.1016/j.wasman.2012.05.010. [本文引用:2]
[109] LEUNG D Y C, WANG C L. Kinetic study of scrap tyre pyrolysis and combustion[J]. Journal of analytical and applied pyrolysis, 1998, 45(2): 153-169. DOI: 10.1016/S0165-2370(98)00065-5. [本文引用:1]
[110] GRONOWICZ J, KUBIAK T. Recykling zużytych opon samochodowych[J]. Problemy eksploatacji, 2007, 2: 5-18. [本文引用:1]
[111] ANTONIOU N, STAVROPOULOS G, ZABANIOTOU A. Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis - Critical review, analysis and recommendations for a hybrid dual system[J]. Renewable and sustainable energy reviews, 2014, 39: 1053-1073. DOI: 10.1016/j.rser.2014.07.143. [本文引用:2]
[112] MARTÍNEZ J D, PUY N, MURILLO R, et al. Waste tyre pyrolysis - A review[J]. Renewable and sustainable energy reviews, 2013, 23: 179-213. DOI: 10.1016/j.rser.2013.02.038. [本文引用:2]
[113] WILLIAMS P T. Pyrolysis of waste tyres: a review[J]. Waste management, 2013, 33(8): 1714-1728. DOI: 10.1016/j.wasman.2013.05.003. [本文引用:3]
[114] CZAJCZYŃSKA D, KRZYŻYŃSKA R, JOUHARA H, et al. Use of pyrolytic gas from waste tire as a fuel: a review[J]. Energy, 2017, 134: 1121-1131. DOI: 10.1016/j.energy.2017.05.042. [本文引用:3]
[115] LÓPEZ G, OLAZAR M, AGUADO R, et al. Continuous pyrolysis of waste tyres in a conical spouted bed reactor[J]. Fuel, 2010, 89(8): 1946-1952. DOI: 10.1016/j.fuel.2010.03.029. [本文引用:1]
[116] GONZÁLEZ J F, ENCINAR J M, CANITO J L, et al. Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study[J]. Journal of analytical and applied pyrolysis, 2001, 58-59: 667-683. DOI: 10.1016/S0165-2370(00)00201-1. [本文引用:1]
[117] KYARI M, CUNLIFFE A, WILLIAMS P T. Characterization of oils, gases, and char in relation to the pyrolysis of different brand s of scrap automotive tires[J]. Energy & fuels, 2005, 19(3): 1165-1173. DOI: 10.1021/ef049686x. [本文引用:1]
[118] DE MARCO RODRIGUEZ I, LARESGOITI M F, CABRERO M A, et al. Pyrolysis of scrap tyres[J]. Fuel processing technology, 2001, 72(1): 9-22. DOI: 10.1016/S0378-3820(01)00174-6. [本文引用:1]
[119] 闫大海. 废轮胎回转窑中试热解产物应用及热解机理和动力学模型研究[D]. 杭州: 浙江大学, 2006. [本文引用:1]
[120] LÓPEZ F A, CENTENO T A, ALGUACIL F J, et al. Distillation of granulated scrap tires in a pilot plant[J]. Journal of hazardous materials, 2011, 190(1/3): 285-292. DOI: 10.1016/j.jhazmat.2011.03.039. [本文引用:2]
[121] BERRUECO C, ESPERANZA E, MASTRAL F J, et al. Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: analysis of the gases obtained[J]. Journal of analytical and applied pyrolysis, 2005, 74(1/2): 245-253. DOI: 10.1016/j.jaap.2004.10.007. [本文引用:1]
[122] LEUNG D Y C, YIN X L, ZHAO Z L, et al. Pyrolysis of tire powder: Influence of operation variables on the composition and yields of gaseous product[J]. Fuel processing technology, 2002, 79(2): 141-155. DOI: 10.1016/S0378-3820(02)00109-1. [本文引用:2]
[123] LARESGOITI M F, DE MARCO I, TORRES A, et al. Chromatographic analysis of the gases obtained in tyre pyrolysis[J]. Journal of analytical and applied pyrolysis, 2000, 55(1): 43-54. DOI: 10.1016/S0165-2370(99)00073-X. [本文引用:1]
[124] TENG H, SERIO M A, WOJTOWICZ M A, et al. Reprocessing of used tires into activated carbon and other products[J]. Industrial & engineering chemistry research, 1995, 34(9): 3102-3111. DOI: 10.1021/ie00048a023. [本文引用:1]
[125] KANDASAMY J, GÖKALP I. Pyrolysis, combustion, and steam gasification of various types of scrap tires for energy recovery[J]. Energy & fuels, 2015, 29(1): 346-354. DOI: 10.1021/ef502283s. [本文引用:1]
[126] LI S Q, YAO Q, CHI Y, et al. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor[J]. Industrial & engineering chemistry research, 2004, 43(17): 5133-5145. DOI: 10.1021/ie030115m. [本文引用:2]
[127] ANTONIOU N, ZABANIOTOU A. Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery[J]. Renewable and sustainable energy reviews, 2013, 20: 539-558. DOI: 10.1016/j.rser.2012.12.005. [本文引用:1]
[128] GALVAGNO S, CASU S, CASABIANCA T, et al. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results[J]. Waste management, 2002, 22(8): 917-923. DOI: 10.1016/S0956-053X(02)00083-1. [本文引用:1]
[129] RAJ R E, KENNEDY Z R, PILLAI B C. Optimization of process parameters in flash pyrolysis of waste tyres to liquid and gaseous fuel in a fluidized bed reactor[J]. Energy conversion and management, 2013, 67: 145-151. DOI: 10.1016/j.enconman.2012.11.012. [本文引用:1]
[130] UCAR S, KARAGOZ S, OZKAN A R, et al. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis[J]. Fuel, 2005, 84(14/15): 1884-1892. DOI: 10.1016/j.fuel.2005.04.002. [本文引用:1]
[131] ZHANG X H, WANG T J, MA L L, et al. Vacuum pyrolysis of waste tires with basic additives[J]. Waste management, 2008, 28(11): 2301-2310. DOI: 10.1016/j.wasman.2007.10.009. [本文引用:1]
[132] AYLÓN E, MURILLO R, FERNÁNDEZ-COLINO A, et al. Emissions from the combustion of gas-phase products at tyre pyrolysis[J]. Journal of analytical and applied pyrolysis, 2007, 79(1/2): 210-214. DOI: 10.1016/j.jaap.2006.10.009. [本文引用:2]
[133] BUAH W K, CUNLIFFE A M, WILLIAMS P T. Characterization of products from the pyrolysis of municipal solid waste[J]. Process safety and environmental protection, 2007, 85(5): 450-457. DOI: 10.1205/psep07024. [本文引用:1]
[134] PSOMOPOULOS C S, BOURKA A, THEMELIS N J. Waste-to-energy: a review of the status and benefits in USA[J]. Waste management, 2009, 29(5): 1718-1724. DOI: 10.1016/j.wasman.2008.11.020. [本文引用:1]
[135] ARENA U, DI GREGORIO F. A waste management planning based on substance flow analysis[J]. Resources, conservation and recycling, 2014, 85: 54-66. DOI: 10.1016/j.resconrec.2013.05.008. [本文引用:1]
[136] YIN L J, WANG C, HU Y Y, et al. AHP-based approach for optimization of waste disposal method in urban functional zone[J]. Environmental technology, 2017, 38(13/14): 1689-1695. DOI: 10.1080/09593330.2016.1244565. [本文引用:1]
[137] CHEN D Z, YIN L J, WANG H, et al. Pyrolysis technologies for municipal solid waste: a review[J]. Waste management, 2014, 34(12): 2466-2486. DOI: 10.1016/j.wasman.2014.08.004. [本文引用:1]
[138] WANG N, CHEN D Z, ARENA U, et al. Hot char-catalytic reforming of volatiles from MSW pyrolysis[J]. Applied energy, 2017, 191: 111-124. DOI: 10.1016/j.apenergy.2017.01.051. [本文引用:1]
[139] ZHANG Q, CHANG J, WANG T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy conversion and management, 2007, 48(1): 87-92. DOI: 10.1016/j.enconman.2006.05.010. [本文引用:1]
[140] VELGHE I, CARLEER R, YPERMAN J, et al. Study of the pyrolysis of municipal solid waste for the production of valuable products[J]. Journal of analytical and applied pyrolysis, 2011, 92(2): 366-375. DOI: 10.1016/j.jaap.2011.07.011. [本文引用:1]
[141] NEDJALKOV I, YOSHIIE R, UEKI Y, et al. Tar and soot generation behaviors from ABS, PC and PE pyrolysis[J]. Journal of material cycles and waste management, 2017, 19(2): 682-693. DOI: 10.1007/s10163-016-0470-7. [本文引用:1]
[142] ZHANG A, XIAO L, WU D. Anaerobic pyrolysis characteristics of municipal solid waste under high temperature heat source[J]. Energy procedia, 2015, 66: 197-200. DOI: 10.1016/j.egypro.2015.02.019. [本文引用:1]
[143] HE M Y, XIAO B, LIU S M, et al. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts[J]. Journal of analytical and applied pyrolysis, 2010, 87(2): 181-187. DOI: 10.1016/j.jaap.2009.11.005. [本文引用:1]
[144] SIPRA A T, GAO N B, SARWAR H. Municipal solid waste (MSW) pyrolysis for bio-fuel production: a review of effects of MSW components and catalysts[J]. Fuel processing technology, 2018, 175: 131-147. DOI: 10.1016/j.fuproc.2018.02.012. [本文引用:1]
[145] 陈家威. 基于改性HZSM-5沸石催化剂可燃固体废弃物催化热解特性研究[D]. 广州: 华南理工大学, 2020. [本文引用:1]
[146] TURSUNOV O. A comparison of catalysts zeolite and calcined dolomite for gas production from pyrolysis of municipal solid waste (MSW)[J]. Ecological engineering, 2014, 69: 237-243. DOI: 10.1016/j.ecoleng.2014.04.004. [本文引用:1]
[147] YAN M, LI X D, LU S Y, et al. Persistent organic pollutant emissions from medical waste incinerators in China[J]. Journal of material cycles and waste management, 2011, 13(3): 213-218. DOI: 10.1007/s10163-011-0020-2. [本文引用:1]
[148] ZHANG Y, XIAO G, WANG G X, et al. Medical waste management in China: a case study of Nanjing[J]. Waste management, 2009, 29(4): 1376-1382. DOI: 10.1016/j.wasman.2008.10.023. [本文引用:1]
[149] GAO Q F, SHI Y J, MO D, et al. Medical waste management in three areas of rural China[J]. PLoS one, 2018, 13(7): e0200889. DOI: 10.1371/journal.pone.0200889. [本文引用:1]
[150] BIRCHARD K. Out of sight, out of mind . .. the medical waste problem[J]. The lancet, 2002, 359(9300): 56. DOI: 10.1016/S0140-6736(02)07256-2. [本文引用:1]
[151] TSAKONA M, ANAGNOSTOPOULOU E, GIDARAKOS E. Hospital waste management and toxicity evaluation: a case study[J]. Waste management, 2007, 27(7): 912-920. DOI: 10.1016/j.wasman.2006.04.019. [本文引用:1]
[152] MOREIRA A M M, GÜNTHER W M R. Assessment of medical waste management at a primary health-care center in São Paulo, Brazil[J]. Waste management, 2013, 33(1): 162-167. DOI: 10.1016/j.wasman.2012.09.018. [本文引用:1]
[153] XIE R, LI W J, LI J, et al. Emissions investigation for a novel medical waste incinerator[J]. Journal of hazardous materials, 2009, 166(1): 365-371. DOI: 10.1016/j.jhazmat.2008.11.029. [本文引用:1]
[154] MAKARICHI L, JUTIDAMRONGPHAN W, TECHATO K A. The evolution of waste-to-energy incineration: a review[J]. Renewable and sustainable energy reviews, 2018, 91: 812-821. DOI: 10.1016/j.rser.2018.04.088. [本文引用:1]
[155] WINDFELD E S, BROOKS M S L. Medical waste management - A review[J]. Journal of environmental management, 2015, 163: 98-108. DOI: 10.1016/j.jenvman.2015.08.013. [本文引用:1]
[156] DENG N, CUI W Q, WANG W W, et al. Experimental study on co-pyrolysis characteristics of typical medical waste compositions[J]. Journal of central south university, 2014, 21(12): 4613-4622. DOI: 10.1007/s11771-014-2468-4. [本文引用:1]
[157] JUN H, LIANG Y S, ZHAO B, et al. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis[J]. Environmental pollution, 2019, 251: 312-327. DOI: 10.1016/j.envpol.2019.05.022. [本文引用:1]
[158] SINGH S, PRAKASH V. Toxic environmental releases from medical waste incineration: a review[J]. Environmental monitoring and assessment, 2007, 132(1/3): 67-81. DOI: 10.1007/s10661-006-9503-3. [本文引用:1]
[159] KLINGHOFFER N B, CASTALDI M J. ChemInform abstract: gasification and pyrolysis of municipal solid waste (MSW)[J]. ChemInform, 2014, 45(15). DOI: 10.1002/chin.201415291. [本文引用:1]
[160] MATSAKAS L, GAO Q J, JANSSON S, et al. Green conversion of municipal solid wastes into fuels and chemicals[J]. Electronic journal of biotechnology, 2017, 26: 69-83. DOI: 10.1016/j.ejbt.2017.01.004. [本文引用:1]
[161] ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste management, 2012, 32(4): 625-639. DOI: 10.1016/j.wasman.2011.09.025. [本文引用:1]
[162] MA H T, CAO Y, LU X Y, et al. Review of typical municipal solid waste disposal status and energy technology[J]. Energy procedia, 2016, 88: 589-594. DOI: 10.1016/j.egypro.2016.06.083. [本文引用:1]
[163] ZROYCHIKOV N A, FADEEV S A, BEZRUKY P P. Development of an environmentally safe process for medical waste disposal based on pyrolysis[J]. Thermal engineering, 2018, 65(11): 833-840. DOI: 10.1134/S0040601518110101. [本文引用:1]
[164] DIAZ L F, SAVAGE G M, EGGERTH L L. Alternatives for the treatment and disposal of healthcare wastes in developing countries[J]. Waste management, 2005, 25(6): 626-637. DOI: 10.1016/j.wasman.2005.01.005. [本文引用:1]
[165] QIN L B, HAN J, ZHAO B, et al. Thermal degradation of medical plastic waste by in-situ FTIR, TG-MS and TG-GC/MS coupled analyses[J]. Journal of analytical and applied pyrolysis, 2018, 136: 132-145. DOI: 10.1016/j.jaap.2018.10.012. [本文引用:1]
[166] QIN L B, HAN J, ZHAO B, et al. The kinetics of typical medical waste pyrolysis based on gaseous evolution behaviour in a micro-fluidised bed reactor[J]. Waste management & research: the journal for a sustainable circular economy, 2018, 36(11): 1073-1082. DOI: 10.1177/0734242X18790357. [本文引用:1]
[167] DASH A, KUMAR S, SINGH R K. Thermolysis of medical waste (waste syringe) to liquid fuel using semi batch reactor[J]. Waste and biomass valorization, 2015, 6(4): 507-514. DOI: 10.1007/s12649-015-9382-3. [本文引用:1]
[168] FANG S Q, JIANG L Y, LI P, et al. Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil[J]. Energy, 2020, 195: 116969. DOI: 10.1016/j.energy.2020.116969. [本文引用:1]
[169] ZHU N P, ZHAO Q, TIAN L X, et al. Cost analysis and development strategies for China' natural gas power generation industry under the situation of energy price's reformation[J]. Energy procedia, 2016, 104: 203-208. DOI: 10.1016/j.egypro.2016.12.035. [本文引用:1]