为解决原料预处理存在的不足,探究新的强化水解工艺,以新鲜和风干的玉米秸秆为原料,采用批式中温(35℃)厌氧发酵实验和有机物水解三种动力学模型研究秸秆厌氧消化水解规律。结果表明,水解动力学模型不能完全反映秸秆整个厌氧消化过程水解规律,秸秆水解速率存在明显的分段差异,新鲜和风干的玉米秸秆水解速率分别在2.75 d和4 d出现“拐点”。通过拟合效果最好的球形颗粒模型求得鲜秸秆的分段水解速率常数分别为0.1004 d−1和0.0188 d−1,干秸秆的分段水解速率常数为0.05658 d−1和0.02124 d−1。研究结果为玉米秸秆的强化水解工艺提供了参考依据。
对杉木屑进行不同成型直径、含水率及压缩速度条件下的冷态压缩成型试验,分析多个影响因素对木屑成型试样的松弛密度、抗压强度及比能耗的影响。通过单因素影响试验分析表明,在含水率为16%和成型直径为10 ~ 12 mm时能获得较好的成型参数,压缩速度为40 mm/min时,可获得较大的松弛密度和抗压强度,但比能耗相对较大。通过设计三因素三水平正交试验,运用多指标综合加权评分法对试验结果进行分析,权重系数综合考虑松弛密度、抗压强度和比能耗的重要与次要程度,结果表明:木屑最佳成型因素水平组合为成型直径10 mm、含水率16%、压缩速度40 mm/min,此时木屑试样松弛密度、抗压强度和比能耗分别为0.91 g/cm3、315 N和30.20 J/g,综合加权评分值最高。
生物质气化是生物质利用研究的一个重点。生物质气化包含生物质的热解和热解所得焦炭的气化两个过程。不同的热解条件将得到具有不同气化活性的生物质焦炭,不同热解条件制取的焦炭的动力学参数也不相同。本文主要概述了热解条件对生物质焦气化活性的影响。同时基于阿伦尼乌斯公式介绍了生物质焦等温气化动力学参数的两种获取方法,非等转化率法是通过选择动力学模型中的结构因子f(x) 来获取动力学参数,而等转化率法是通过避开选择动力学模型中的结构因子f(x) 来获取动力学参数。基于简单碰撞理论提出了获取等温气化动力学参数的新方法,对阿伦尼乌斯公式中的指数项、指前因子A提出了明确的物理意义。基于简单碰撞理论的等温求解气化动力学参数方法类似于基于阿伦尼乌斯公式的等温求解气化动力学参数方法。
海上风电从潮间带和近海走向深海远岸将是必然趋势。现有的机组基础型式及安装技术势必不能满足新的环境要求。漂浮式基础、整体安装及自航自升式施工平台极有可能成为未来海上风力发电的主流技术。北半球中纬度附近海域在发展深海风电方面具有独特优势及迫切需求,我国需尽早进行规划和部署相关技术及产业。
近年来,纳米技术逐渐被用来设计和制备硅锗(Si−Ge)热电材料和新型器件。为了提高Si−Ge热电材料的热电性能,研究学者利用各种纳米结构对Si−Ge热电材料进行了理论研究。其中,利用纳米线、超晶格和量子点等结构中的能带机理与散射机理,从理论上设计了降低Si−Ge纳米结构热导率和提高其功率因子的途径。同时,高效的Si−Ge纳米热电材料被制备出来,包括纳米块体材料的热电性能得到大幅度提高,室温下薄膜和纳米线的热电性能实现了重大突破。在高性能材料的基础上,新型Si−Ge纳米热电器件的研发除了关注于制备工艺优化外,还包括传热结构和原型器件的设计。
光伏并网逆变器是光伏发电系统的核心部件,其性能的优劣直接关系到整个电站的发电效率。目前,逆变器的性能检测基本上都是在标准实验室环境下进行的,缺乏实际发电运行环境下的性能检测。本文针对逆变器在实际运行环境中存在的问题,构建了光伏并网逆变器入网检测平台,提出了逆变器户外测试方案。实验表明,该测试平台可实现对光伏逆变器实际性能指标的检测与分析,具有较好的合理性和有效性,可以用于光伏并网逆变器的户外实证性测试。
在地热发电或直接利用过程中,与地热流体(液体或蒸汽)接触的设备、管道或管件存在着腐蚀和结垢现象,往往成为地热开发利用的技术瓶颈。因此,开展地热流体的腐蚀与结垢控制技术研究至关重要。本文主要分析了近年来国内外在地热流体的腐蚀和结垢控制方面的研究进展,包括选材、涂层、流体预处理、化学添加剂等控制方法,并提出了进一步的研究方向,包括全面的地热流体腐蚀结垢趋势预测及地球化学模拟,结垢机理研究,涂层和基底的结合力和耐久性研究,阴极保护以及复合控制方法开发等。
实验采用定容压力搜索法测量了聚胺钻井液在3℃ ~ 13℃范围内甲烷水合物的三相平衡条件。定容条件下考察了在初始压力分别为8 MPa、10 MPa、12 MPa条件下聚胺钻井液中甲烷水合物的生成过程。结果表明,聚胺钻井液对甲烷水合物生成的热力学抑制作用并不明显。同时,提高反应的初始压力会显著缩短水合物的生成时间、增加水合物的生成总量、增大反应初期生长速率以及水合物生长的不均匀性。强化聚胺钻井液的传热传质速率并降低钻探时的井下压力有利于抑制钻井液中水合物的生成。
动力电池作为电动汽车(Electric vehicle, EV)的重要组件,在低温环境下存在能量密度和功率密度下降等问题。为提高低温条件下动力电池的性能,需要合适的电池热管理系统。本文介绍了动力电池在低温环境下的放电特性,整理归纳了现有的各种电池加热方式,并综述了低温环境下电池热管理研究进展,对电池低温下热管理的进一步研究具有指导意义。
储能电池在新能源并网、新能源汽车等产业领域发挥着重要作用,为了对电池进行有效地控制与管理,需要配备必要的电池管理系统,电池荷电状态(SOC)是其中最为重要的一环。磷酸铁锂(LiFePO4,LFP)电池SOC与多个影响因素密切相关,呈强非线性,本文重点归纳温度对磷酸铁锂电池SOC的影响。首先将工作温度对开路电压、实际容量、充放电效率、自放电率及电池老化等电池特性的影响进行归纳总结,随后通过对工作温度的影响规律进行分析、总结和归纳,基于经典“开路电压 + 安时积分”法将温度参数直接或间接引入到SOC的实时估算模型中,得到考虑温度参数的新模型,进而提高电池SOC的估算精度。
鉴于汽车启动电源铅酸电池存在严重环境污染隐患,本文采用环保型32650圆柱磷酸铁锂电池组装成25.6 V/65 A•h电池组代替铅酸电池应用于汽车启动电源,并分别对磷酸铁锂电池组的常温和低温启动能力、倍率性能和低温放电性能等进行测试。实验结果表明,电池组0.33 C放电容量为67.028 A•h,3 C放电容量为0.33 C放电容量的98.24%,电池组具有较好的倍率性能;电池组在 −30℃放电容量为额定容量的84.7%,具有良好的低温性能;电池组在25℃和 −20℃下以600 A电流放电,单串电池电压均高于放电保护电压;电池组在25℃搁置28 d之后,容量恢复率为99.37%;磷酸铁锂电池组性能均满足汽车启动电源性能要求,可以代替铅酸电池作为汽车启动电源。
将二氧化碳埋存到深部盐水层中是目前缓解温室效应的可行性对策之一,在评价储层理论埋存量时,溶解封存量在总埋存量中占有很大的比例。本文通过对相关文献的调研,计算对比了Duan&Sun模型模拟数据与前人实验数据的误差,根据前人实验与本文模拟数据分析了二氧化碳在盐水层中溶解的动力过程和热力过程,二氧化碳通过扩散作用溶解到盐水中,引起盐水层密度的变化,计算系统瑞利数满足对流运动发生的基本条件后,系统产生对流,这有利于二氧化碳的溶解。分析了温度、压力和矿化度对二氧化碳溶解的影响。在前几百年内溶解缓慢易导致泄漏,低温高压、低矿化度下二氧化碳溶解度较高,小二氧化碳水滴更有利于二氧化碳封存。