欢迎访问《新能源进展》官方网站!今天是
论文

合成气燃烧反应机理的验证和分析

  • 王全德 ,
  • 魏赏赏 ,
  • 王 伟 ,
  • 崔晨晓
展开
  • 1. 中国矿业大学低碳能源研究院,徐州 221008;
    2. 中国矿业大学电力工程学院,徐州 221116
王全德(1986-),男,博士,助理研究员,主要从事燃烧化学、计算化学和分子模拟方向的研究。

收稿日期: 2014-03-19

  修回日期: 2014-06-17

  网络出版日期: 2014-06-30

基金资助

国家中央高校基本科研业务费专项资助基金(2013QNA08)

Validation and Analysis of Reaction Mechanisms for Syngas Combustion

  • WANG Quan-de ,
  • WEI Shang-shang ,
  • WANG Wei ,
  • CUI Chen-xiao
Expand
  • 1. Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China;
    2. School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 22116, China

Received date: 2014-03-19

  Revised date: 2014-06-17

  Online published: 2014-06-30

摘要

本文针对典型合成气燃烧的详细化学动力学机理进行了系统的验证和分析。通过不同反应机理对点火延迟时间和层流火焰速度的预测,研究和分析了不同反应机理的区别和模拟结果的可靠性。采用强制敏感度分析方法揭示了影响合成气点火延迟时间和层流火焰速度的重要反应,并对相关反应的动力学进行了分析讨论,为进一步构建统一可靠的燃烧反应机理奠定了基础。

本文引用格式

王全德 , 魏赏赏 , 王 伟 , 崔晨晓 . 合成气燃烧反应机理的验证和分析[J]. 新能源进展, 2014 , 2(3) : 173 -179 . DOI: 10.3969/j.issn.2095-560X.2014.03.002

Abstract

Detailed reaction mechanisms for syngas combustion are validated and analyzed in the present work. According to the predictions of ignition delay time and laminar flame speed by employing contemporary combustion mechanisms, the differences among these mechanisms are presented and their robustness for numerical simulations are validated. Further, on the basis of sensitivity analysis, important reactions which greatly affect the ignition and laminar flame speed are identified, and related reaction rate constants are discussed. The present work provides fundamental information for further development of a universal reaction mechanism for syngas combustion.

参考文献

[1] Marcos C, Dryer F L. Syngas combustion kinetics and applications[J]. Combustion Science and Technology, 2008, 180(6): 1053-1096.

[2] Davis S G, Joshi A V, Wang H, et al. An optimized kinetic model of H2/CO combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1283-1292.

[3] Priyank S, Williams F A. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide[J]. Combustion and Flame, 2006, 145(1): 316-323.

[4] Li J, Zhao Z, Kazakov A, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39(3): 109-136.

[5] Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/ hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3471-3485.

[6] Sun H, Yang S I, Jomaas G, et al. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion[J]. Proceedings of the Combustion Institute, 2007, 31(1): 439-446.

[7] Kéromnès A, Metcalfe W K, Heufer K A, et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combustion and Flame, 2013, 160(6): 995-1011.

[8] Kee R J, Rupley F M, Miller J A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, SAND89-8009[R]. Albequerque, NM: Sandia National Laboratories, 1989. Lutz A E, Kee R J, Miller J A. Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, SAND87-8248[R]. Livermore, CA: Sandia National Laboratories, 1990.

[9] Lutz A E, Kee R J, Miller J A. Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, SAND87-8248[R]. Livermore, CA: Sandia National Laboratories, 1990.

[10] Kee R J, Grcar J F, Smooke M D, et al. A FORTRAN Program for Modeling Steady Laminar One-dimensional Premixed Flames, SAND85-8240[R]. San Diego, CA: Sandia National Laboratories, 1985.

[11] Kee R J, Dixon-Lewis G, Warnatz J. A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties, SAND86-8246[R]. Livermore, CA: Sandia National Laboratories, 1988.

[12] Wang Q D, Fang Y M, Wang F, et al. Systematic analysis and reduction of combustion mechanisms for ignition of multi-component kerosene surrogate[J]. Proceedings of the Combustion Institute, 2013, 34(1): 187-195.

[13] Troe J. The thermal dissociation/recombination reaction of hydrogen peroxide H2O2 (+ M) → 2OH (+ M) III.: Analysis and representation of the temperature and pressure dependence over wide ranges[J]. Combustion and Flame, 2011, 158(4): 594-601.

[14] Hippler H, Troe J, Willner J. Shock wave study of the reaction HO2 + HO2 → H2O2 + O2 Confirmation of a rate constant minimum near 700K[J]. The Journal of Chemical Physics, 1990, 93: 1755-1760.

[15] Kappel C, Luther K, Troe J. Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions[J]. Physical Chemistry Chemical Physics, 2002, 4(18): 4392-4398.

[16] Zhou D Y, Han K, Zhang P, et al. Theoretical Determination of the Rate Coefficient for the HO2 + HO2 → H2O2 + O2 Reaction: Adiabatic Treatment of Anharmonic Torsional Effects[J]. The Journal of Physical Chemistry A, 2012, 116(9): 2089-2100.

[17] Tsang W, Hampson R F. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds[J]. Journal of Physical and Chemical Reference Data, 1986, 15: 1087-1279.

[18] Baulch D L, Bowman C T, Cobos C J, et al. Evaluated kinetic data for combustion modeling: supplement II[J]. Journal of Physical and Chemical Reference Data, 2005, 34: 757-1397.

[19] Ellingson B A, Theis D P, Tishchenko O, et al.  Reactions of hydrogen atom with hydrogen peroxide[J]. The Journal of Physical Chemistry A, 2007, 111(51): 13554-13566.

[20] Cavaliere D E, Joannon M D, Sabia P, et al. A comprehensive kinetic modeling of ignition of syngas-air mixtures at low temperatures and high pressures[J]. Combustion Science and Technology, 2010, 182(4-6): 692-701.

[21] Kalitan D M, Mertens J D, Crofton M W, et al. Ignition and oxidation of lean CO/H2 fuel blends in air[J]. Journal of propulsion and power, 2007, 23(6): 1291-1301.

[22] Thi L D, Zhang Y J, Fu J, et al. Study on ignition delay of multi-component syngas using shock tube[J]. The Canadian Journal of Chemical Engineering, 2014, 92(5): 861-870.

文章导航

/