[1] Chen H, Goswami D Y, Stefanakos E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renewable and sustainable energy Reviews, 2010, 14(9): 3059-3067.
[2] Maizza V, Maizza A. Unconventional working fluids in organic rankine-cycles for waste energy recovery systems[J]. Applied thermal engineering, 2001, 21(3):381-390.
[3] Larjola J. Electricity from industrial waste heat using high-speed organic rankine cycle (ORC)[J]. International Journal of Production Economics, 1995, 41(1/3): 227-35.
[4] Quoilin S. Sustainable energy conversion through the use of organic rankine cycles for waste heat recovery and solar applications[D]. Belgium: University of Liege, 2011.
[5] Invernizzi C, Iora P, Silva P. Bottoming micro-Rankine cycles for micro-gas turbines[J]. Applied Thermal Engineering, 2007, 27(1): 100-110.
[6] Bruno J C, Lopez-Vilada J, Letelier E, et al. Modelling and optimization of solar organic Rankine cycle engines for reverse osmosis desalination[J]. Applied Thermal Engineering, 2008, 28(17/18): 2212-2226.
[7] Stijeponvic M Z, Linke P, Papadopoulos A I, et al. On the role of working fluid properties in Organic Rankine cycle performance[J]. Applied Thermal Engineering 2012, 36: 406-413.
[8] Quoilin S, Lemort V, Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander[J]. Applied energy, 2010, 87: 1260-1268.
[9] Tchanche B F, Lambrinos G, Frangoudakis A, et al. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system[J]. Applied energy, 2010, 87: 1295-1306.
[10] Saleh B, Koglbauer G, Wendland M. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32: 1210-1221.
[11] Heberle F, Preißinger M, Brüggemann D. Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources[J]. Renewable Energy, 2012, 37(1): 364-370.
[12] Wang X W, Liu X M, Zhang C H. Parametric optimization and range analysis of Organic Rankine Cycle for binary-cycle geothermal plant[J]. 2014, 80: 256-265.
[13] Drescher, U, Brüggemann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants[J]. Applied Thermal Engineering, 2007, 27(1): 223-228.
[14] Tchanche B F, Papadakis G, Lambrinos G, et al. Fluid selection for a low-temperature solar organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(11/12): 2468-2476.
[15] Rayegan R, Tao Y X. A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)[J], Renewable Energy, 2011, 36(2): 659-670.
[16] Liu W, Meinel D, Wieland C, et al. Investigation of hydrofluoroolefins as potential working fluids in organic Rankine cycle for geothermal power generation[J]. Energy, 2014, 67: 106-116.
[17] Quoilin S, Declaye S, Tchanche B F, et al. Thermo- economic optimization of waste heat recovery Organic Rankine Cycles[J]. Applied Thermal Engineering, 2011, 31(14/15): 2885-2893.
[18] Guo T, Wang H X, Zhang S J. Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources[J]. Energy, 2011, 36(5): 2639-2649.
[19] Wang Z Q, Zhou N J, Guo J, et al. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat[J]. Energy, 2012, 40(1): 107-115.
[20] Borsukiewicz-Gozdur A, Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius–Rankine cycle[J]. Energy, 2007, 32(4): 344-352.
[21] Khennich M, Galanis N. Thermodynamic analysis and optimization of power cycles using a finite low- temperature heat source[J]. International Journal of Energy Research, 2012, 36(7): 871-885.
[22] Dai Y P, Wang J F, Gao L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery[J]. Energy Conversion and Management, 2009, 50: 576-582.
[23] Hung T C, Wang S K, Kuo C H, et al. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources[J]. Energy, 2010, 35: 1403-1411.
[24] 韩中合, 叶依林, 刘赟. 不同工质对太阳能有机朗肯循环系统性能的影响[J]. 动力工程学报, 2012, 32(3): 229-234.
[25] Kang S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid[J]. Energy, 2012, 41(1): 514-524.
[26] Nillson H R. Machine of the Screw-Compressor[P]. Patent: US2620968, Dec. 9, 1952.
[27] Sprankle R S. Electrical power generating systems[P]. Patent: US3751673, Aug. 7, 1973.
[28] 杨金焕, 夏葵, 姚艳霞, 等. 两相螺杆膨胀机的发展及其在制冷系统中的应用[J]. 制冷, 2003, 22(1): 23-27.
[29] 李学锋, 赵峰, 胡亮光, 等. 地热能螺杆膨胀机——汽轮机复合动力系统[J]. 天津电力技术, 1994, 4: 1-4.
[30] 陈建和, 葛红. 汽液全流螺杆澎胀机发电新技术应 用[J]. 节能, 2000, 6: 21-23.
[31] 刘林顶. 单螺杆膨胀机及其有机朗肯循环系统研 究[D]. 北京: 北京工业大学, 2010.
[32] Wang W, Wu Y T, Ma C F, et al. Preliminary experimental study of single screw expander prototype[J]. Applied thermal engineering, 2011, 31: 3684-3688.
[33] He W, Wu Y T, Peng Y H, et al. Influence of intake pressure on the performance of single screw expander working with compressed air[J]. Applied thermal engineering, 2013, 51: 662-669.
[34] Yanagisawa T, Fukuta M, Ogi Y, et al. Performance of an oil-free scroll-type air expander[C]//Proceedings of the IMechE Conference on Compressors and their Systems, 2001, 167-174.
[35] Aoun B, Clodic D F. Theoretical and experimental study of an oil-free scroll type vapor expander[C]//Proceedings of International Compressor Engineering Conference, Purdue, USA: 2008 (Paper 1188).
[36] Zanelli R, Favrat D. Experimental investigation of a hermetic scroll expander-generator[C]//Proceedings of the International Compressor Engineering Conference, Purdue, USA, 1994, 459-464.
[37] Lemort V, Declaye S, Quoilin S. Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle[C]//Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(1): 126-136.
[38] Wang H, Peterson R B, Herron T. Experimental performance of a compliant scroll expander for an organic Rankine cycle[C]//Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(7): 863-872.
[39] 严雨林, 王怀信, 郭涛. 中低温地热发电有机朗肯循环系统性能的实验研究[J]. 太阳能学报, 2013, 34(8): 1360-1365.
[40] 顾伟, 翁一武, 王玉璋, 等. 余热利用有机物朗肯循环最佳热回收效率分析[J]. 太阳能学报, 2011, 32(5): 662-668.
[41] 韦伟, 严瑞东, 刘杰, 等. 采用涡旋式膨胀机的有机朗肯循环系统试验研究[J]. 流体机械, 2012, 40(11): 1-4.
[42] Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. International Journal of Refrigeration, 1994, 17(5): 290-310.
[43] Musthafah M T, Yamada N. Thermodynamic analysis of expansion profile for displacement-type expander in low-temperature Rankine cycle[J]. Journal of Thermal Science and Technology, 2010, 5(1): 61-74.
[44] Mohd M, Tahir N Y, Hoshino T. Efficiency of compact organic Rankine cycle system with rotary-vane-type expander for low-temperature waste heat recovery[J]. International Journal of Environmental Science and Engineering, 2010, 2(1): 11-16.
[45] Yang B, Peng X, He Z, et al. Experimental investigation on the internal working process of a CO2 rotary vane expander[J]. Applied Thermal Engineering 2009, 29(11/12): 2289-2296.
[46] Singh B R, Singh O A. Study of performance output of a multivane air engine applying optimal injection and vane angles[J]. International Journal of Rotating Machinery, 2012, doi:10.1155/2012/578745.
[47] Sauret E, Rowlands A S. Candidate radial-in?ow turbines and high-density working ?uids for geothermal power systems[J]. Energy, 2011, 36: 4460-4467.
[48] Kang S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid, Energy[J]. 2012, 41(1): 514-24.
[49] Cho S Y, Cho H C, Ahn K Y, et al. A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for ?uctuations of the available thermal energy[J]. Energy, 2014, 64: 900-911.
[50] Yamamoto T, Furuhata T, Arai N, et al. Design and testing of the organic Rankine cycle[J]. Energy, 2001, 26(3): 239-51.
[51] Fiaschi D, Manfrida G, Maraschiello F. Thermo-?uid dynamics preliminary design of turbo-expanders for ORC cycles[J]. Applied energy, 2012, 97: 601-608.
[52] Pei G, Li J, Li Y Z, et al. Construction and dynamic test of a small-scale organic Rankine cycle[J]. Energy, 2011, 36(5): 3215 -3223.
[53] Li J Z, Pei G, Li Y, et al. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures[J]. Energy, 2012, 38(1): 85-95.
[54] 李昀竹, 裴刚, 李晶, 等. 小型涡轮在有机朗肯循环系统中的性能测试与分析[J]. 热能动力工程, 2012, 27(1): 28-32.
[55] 潘利生. 低温发电有机朗肯循环优化及辐流式汽轮机性能研究[D]. 天津: 天津大学, 2012.
[56] Pan L S, Wang H X. Improved analysis of Organic Rankine Cycle based on radial flow turbine, Applied thermal engineering[J]. 2013, 61: 606-615.
[57] 徐荣吉, 席奂, 何雅玲. 内回热/无回热有机朗肯循环的实验研究[J]. 工程热物理学报, 2013, 32(2): 205-210.
[58] Quoilin S, Lemort V. Technological and economical survey of Organic Rankine Cycle systems[C]//5th European Conference Economics and Management of Energy in Industry, Algarve, Portugal, 2009.
[59] Maraver D, Royo J, Lemort V, et al. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications[J]. Applied energy, 2014, 117: 11-29.
[60] Desai N B, Bandyopadhyay S. Process integration of organic Rankine cycle[J]. Energy, 2009, 34: 1674-1686.
[61] 张红光, 张健, 杨凯, 等. 抽气回热式有机朗肯循环系统热力学分析[J]. 农业机械学报, 2013, 44(5): 35-40.
[62] 王智, 于一达, 韩中合, 等. 低温抽气回热式有机朗肯循环的参数优化[J]. 华东电力, 2013, 41(2): 0448-0451.
[63] Xu R J, He Y L. A vapor injector-based novel regenerative organic Rankine cycle[J]. Applied Thermal Engineering, 2011, 31(6/7): 1238-1243.
[64] 刘朝, 王茜. 带喷射回热器超临界有机朗肯循环系统性能分析[J]. 热科学与技术, 2013, 12(3): 221-227.
[65] Li X G, Zhao C C, Hu X C. Thermodynamic analysis of Organic Rankine Cycle with Ejector[J]. Energy, 2012, 42(1): 342-349.
[66] Li X G, Li X J, Zhang Q L. The first and second law analysis on an organic Rankine cycle with ejector[J]. Solar Energy, 2013, 93: 100-108.
[67] 饶文姬, 赵良举, 刘朝, 等. 利用LNG冷能与工业余热的有机朗肯循环研究[J]. 工程热物理学报, 2014, 35(2): 213-217.
[68] Tamm G, Goswanmi D Y, Lu S, et al. Theoretical and experimental investigation of an ammonia-water power and refrigeration thermodynamic cycle[J]. 2004, Solar Energy, 76: 217-228.
[69] 赵巍, 杜建一, 徐建中. 微型燃气轮机与有机朗肯循环装置组成联合循环的设计与分析[J]. 中国电机工程学报, 2009, 29(29): 19-24.
[70] 刘乙成, 闫广, 高传昌, 等. 利用烟气余热的有机朗肯循环与苦咸水淡化联合系统[J]. 水电能源科学, 2013, 31(3): 156-158.
[71] Wei D H, Lu X S, Lu Z, et al. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery[J]. 2008, 28: 1216-1224.
[72] Liu H, Shao Y J, Li J X. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)– Thermodynamic modeling studies[J]. 2011, 35: 3985- 3994.
[73] 魏东红, 鲁雪生, 顾建明, 等. 移动边界模型应用于废热驱动的有机朗肯循环系统的动态仿真[J]. 上海交通大学学报, 2006, 8: 1439-1402.