欢迎访问《新能源进展》官方网站!今天是
论文

有机朗肯循环的研究进展

  • 邓立生 ,
  • 黄宏宇 ,
  • 何兆红 ,
  • 窪田光宏 ,
  • 袁浩然 ,
  • 呼和涛力 ,
  • 小林敬幸
展开
  • 1. 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广州 510640;
    2. 日本名古屋大学,名古屋 4648603
邓立生(1985-),男,硕士,研究实习员,主要从事低品位能源利用、吸附式制冷技术的研究。

收稿日期: 2013-12-26

  修回日期: 2014-06-27

  网络出版日期: 2014-06-30

基金资助

中国科学院外籍青年科学家计划(2013Y1GA0008)

Research Progress on Organic Rankine Cycle

  • DENG Li-sheng ,
  • HUANG Hong-yu ,
  • HE Zhao-hong ,
  • KUBOTA Mitsuhiro ,
  • YUAN Hao-ran ,
  • HUHE Tao-li ,
  • KOBAYASHI Noriyuki
Expand
  • 1. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences,     Guangzhou 510640, China;
    2. Nagoya University, Nagoya 4648603, Japan

Received date: 2013-12-26

  Revised date: 2014-06-27

  Online published: 2014-06-30

摘要

有机朗肯循环是一种被认为能有效利用低温热能的技术。科研工作者在不同方面(包括工质、膨胀机、换热器的影响、系统的优化)对有机朗肯循环系统效率的影响进行了大量的研究。本文针对不同热源的工质筛选、膨胀机的特点、系统循环优化以及换热器的影响方面进行了讨论和总结,为有机朗肯循环系统的实际应用提供参考。

本文引用格式

邓立生 , 黄宏宇 , 何兆红 , 窪田光宏 , 袁浩然 , 呼和涛力 , 小林敬幸 . 有机朗肯循环的研究进展[J]. 新能源进展, 2014 , 2(3) : 180 -189 . DOI: 10.3969/j.issn.2095-560X.2014.03.003

Abstract

Organic Rankine Cycle (ORC) is considered as a promising technology for effective utilization of low-temperature energy. Large number of studies on the ORC system (including the working fluid, the expander, the heat exchanger, and optimization of system) have been carried out by the researchers. In this study, the working fluids selection for different type heat sources, characteristics of expanders, heat exchanger influences and system design optimization are discussed and summarized to provide some references for the utilization of the ORC system.

参考文献

[1] Chen H, Goswami D Y, Stefanakos E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renewable and sustainable energy Reviews, 2010, 14(9): 3059-3067.

[2] Maizza V, Maizza A. Unconventional working fluids in organic rankine-cycles for waste energy recovery systems[J]. Applied thermal engineering, 2001, 21(3):381-390.

[3] Larjola J. Electricity from industrial waste heat using high-speed organic rankine cycle (ORC)[J]. International Journal of Production Economics, 1995, 41(1/3): 227-35.

[4] Quoilin S. Sustainable energy conversion through the use of organic rankine cycles for waste heat recovery and solar applications[D]. Belgium: University of Liege, 2011.

[5] Invernizzi C, Iora P, Silva P. Bottoming micro-Rankine cycles for micro-gas turbines[J]. Applied Thermal Engineering, 2007, 27(1): 100-110.

[6] Bruno J C, Lopez-Vilada J, Letelier E, et al. Modelling and optimization of solar organic Rankine cycle engines for reverse osmosis desalination[J]. Applied Thermal Engineering, 2008, 28(17/18): 2212-2226.

[7] Stijeponvic M Z, Linke P, Papadopoulos A I, et al. On the role of working fluid properties in Organic Rankine cycle performance[J]. Applied Thermal Engineering 2012, 36: 406-413.

[8] Quoilin S, Lemort V, Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander[J]. Applied energy, 2010, 87: 1260-1268.

[9] Tchanche B F, Lambrinos G, Frangoudakis A, et al. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system[J]. Applied energy, 2010, 87: 1295-1306.

[10] Saleh B, Koglbauer G, Wendland M. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32: 1210-1221.

[11] Heberle F, Preißinger M, Brüggemann D. Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources[J]. Renewable Energy, 2012, 37(1): 364-370.

[12] Wang X W, Liu X M, Zhang C H. Parametric optimization and range analysis of Organic Rankine Cycle for binary-cycle geothermal plant[J].  2014, 80: 256-265.

[13] Drescher, U, Brüggemann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants[J]. Applied Thermal Engineering, 2007, 27(1): 223-228.

[14] Tchanche B F, Papadakis G, Lambrinos G, et al. Fluid selection for a low-temperature solar organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(11/12): 2468-2476.

[15] Rayegan R, Tao Y X. A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)[J], Renewable Energy, 2011, 36(2): 659-670.

[16] Liu W, Meinel D, Wieland C, et al. Investigation of hydrofluoroolefins as potential working fluids in organic Rankine cycle for geothermal power generation[J]. Energy, 2014, 67: 106-116.

[17] Quoilin S, Declaye S, Tchanche B F, et al. Thermo- economic optimization of waste heat recovery Organic Rankine Cycles[J]. Applied Thermal Engineering, 2011, 31(14/15): 2885-2893.

[18] Guo T, Wang H X, Zhang S J. Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources[J]. Energy, 2011, 36(5): 2639-2649.

[19] Wang Z Q, Zhou N J, Guo J, et al. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat[J]. Energy, 2012, 40(1): 107-115.

[20] Borsukiewicz-Gozdur A, Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius–Rankine cycle[J]. Energy, 2007, 32(4): 344-352.

[21] Khennich M, Galanis N. Thermodynamic analysis and optimization of power cycles using a finite low- temperature heat source[J]. International Journal of Energy Research, 2012, 36(7): 871-885.

[22] Dai Y P, Wang J F, Gao L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery[J]. Energy Conversion and Management, 2009, 50: 576-582.

[23] Hung T C, Wang S K, Kuo C H, et al. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources[J]. Energy, 2010, 35: 1403-1411.

[24] 韩中合, 叶依林, 刘赟. 不同工质对太阳能有机朗肯循环系统性能的影响[J]. 动力工程学报, 2012, 32(3): 229-234.

[25] Kang S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid[J]. Energy, 2012, 41(1): 514-524.

[26] Nillson H R. Machine of the Screw-Compressor[P]. Patent: US2620968, Dec. 9, 1952.

[27] Sprankle R S. Electrical power generating systems[P]. Patent: US3751673, Aug. 7, 1973.

[28] 杨金焕, 夏葵, 姚艳霞, 等. 两相螺杆膨胀机的发展及其在制冷系统中的应用[J]. 制冷, 2003, 22(1): 23-27.

[29] 李学锋, 赵峰, 胡亮光, 等. 地热能螺杆膨胀机——汽轮机复合动力系统[J]. 天津电力技术, 1994, 4: 1-4.

[30] 陈建和, 葛红. 汽液全流螺杆澎胀机发电新技术应  用[J]. 节能, 2000, 6: 21-23.

[31] 刘林顶. 单螺杆膨胀机及其有机朗肯循环系统研   究[D]. 北京: 北京工业大学, 2010.

[32] Wang W, Wu Y T, Ma C F, et al. Preliminary experimental study of single screw expander prototype[J]. Applied thermal engineering, 2011, 31: 3684-3688.

[33] He W, Wu Y T, Peng Y H, et al. Influence of intake pressure on the performance of single screw expander working with compressed air[J]. Applied thermal engineering, 2013, 51: 662-669.

[34] Yanagisawa T, Fukuta M, Ogi Y, et al. Performance of an oil-free scroll-type air expander[C]//Proceedings of the IMechE Conference on Compressors and their Systems, 2001, 167-174.

[35] Aoun B, Clodic D F. Theoretical and experimental study of an oil-free scroll type vapor expander[C]//Proceedings of International Compressor Engineering Conference, Purdue, USA: 2008 (Paper 1188).

[36] Zanelli R, Favrat D. Experimental investigation of a hermetic scroll expander-generator[C]//Proceedings of the International Compressor Engineering Conference,  Purdue, USA, 1994, 459-464.

[37] Lemort V, Declaye S, Quoilin S. Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle[C]//Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(1): 126-136.

[38] Wang H, Peterson R B, Herron T. Experimental performance of a compliant scroll expander for an organic Rankine cycle[C]//Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(7): 863-872.

[39] 严雨林, 王怀信, 郭涛. 中低温地热发电有机朗肯循环系统性能的实验研究[J]. 太阳能学报, 2013, 34(8): 1360-1365.

[40] 顾伟, 翁一武, 王玉璋, 等. 余热利用有机物朗肯循环最佳热回收效率分析[J]. 太阳能学报, 2011, 32(5): 662-668.

[41] 韦伟, 严瑞东, 刘杰, 等. 采用涡旋式膨胀机的有机朗肯循环系统试验研究[J]. 流体机械, 2012, 40(11): 1-4.

[42] Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. International Journal of Refrigeration, 1994, 17(5): 290-310.

[43] Musthafah M T, Yamada N. Thermodynamic analysis of expansion profile for displacement-type expander in low-temperature Rankine cycle[J]. Journal of Thermal Science and Technology, 2010, 5(1): 61-74.

[44] Mohd M, Tahir N Y, Hoshino T. Efficiency of compact organic Rankine cycle system with rotary-vane-type expander for low-temperature waste heat recovery[J]. International Journal of Environmental Science and Engineering, 2010, 2(1): 11-16.

[45] Yang B, Peng X, He Z, et al. Experimental investigation on the internal working process of a CO2 rotary vane expander[J]. Applied Thermal Engineering 2009, 29(11/12): 2289-2296.

[46] Singh B R, Singh O A. Study of performance output of a multivane air engine applying optimal injection and vane angles[J]. International Journal of Rotating Machinery, 2012, doi:10.1155/2012/578745.

[47] Sauret E, Rowlands A S. Candidate radial-in?ow turbines and high-density working ?uids for geothermal power systems[J]. Energy, 2011, 36: 4460-4467.

[48] Kang S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid, Energy[J]. 2012, 41(1): 514-24.

[49] Cho S Y, Cho H C, Ahn K Y, et al. A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for ?uctuations of the available thermal energy[J]. Energy, 2014, 64: 900-911.

[50] Yamamoto T, Furuhata T, Arai N, et al. Design and testing of the organic Rankine cycle[J]. Energy, 2001, 26(3): 239-51.

[51] Fiaschi D, Manfrida G, Maraschiello F. Thermo-?uid dynamics preliminary design of turbo-expanders for ORC cycles[J]. Applied energy, 2012, 97: 601-608.

[52] Pei G, Li J, Li Y Z, et al. Construction and dynamic test of a small-scale organic Rankine cycle[J]. Energy, 2011, 36(5): 3215 -3223.

[53] Li J Z, Pei G, Li Y, et al. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures[J]. Energy, 2012, 38(1): 85-95.

[54] 李昀竹, 裴刚, 李晶, 等. 小型涡轮在有机朗肯循环系统中的性能测试与分析[J]. 热能动力工程, 2012, 27(1): 28-32.

[55] 潘利生. 低温发电有机朗肯循环优化及辐流式汽轮机性能研究[D]. 天津: 天津大学, 2012.

[56] Pan L S, Wang H X. Improved analysis of Organic Rankine Cycle based on radial flow turbine, Applied thermal engineering[J]. 2013, 61: 606-615.

[57] 徐荣吉, 席奂, 何雅玲. 内回热/无回热有机朗肯循环的实验研究[J]. 工程热物理学报, 2013, 32(2): 205-210.

[58] Quoilin S, Lemort V. Technological and economical survey of Organic Rankine Cycle systems[C]//5th European Conference Economics and Management of Energy in Industry, Algarve, Portugal, 2009.

[59] Maraver D, Royo J, Lemort V, et al. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications[J]. Applied energy, 2014, 117: 11-29.

[60] Desai N B, Bandyopadhyay S. Process integration of organic Rankine cycle[J]. Energy, 2009, 34: 1674-1686.

[61] 张红光, 张健, 杨凯, 等. 抽气回热式有机朗肯循环系统热力学分析[J]. 农业机械学报, 2013, 44(5): 35-40.

[62] 王智, 于一达, 韩中合, 等. 低温抽气回热式有机朗肯循环的参数优化[J]. 华东电力, 2013, 41(2): 0448-0451.

[63] Xu R J, He Y L. A vapor injector-based novel regenerative organic Rankine cycle[J]. Applied Thermal Engineering, 2011, 31(6/7): 1238-1243.

[64] 刘朝, 王茜. 带喷射回热器超临界有机朗肯循环系统性能分析[J]. 热科学与技术, 2013, 12(3): 221-227.

[65] Li X G, Zhao C C, Hu X C. Thermodynamic analysis of Organic Rankine Cycle with Ejector[J]. Energy, 2012, 42(1): 342-349.

[66] Li X G, Li X J, Zhang Q L. The first and second law analysis on an organic Rankine cycle with ejector[J]. Solar Energy, 2013, 93: 100-108.

[67] 饶文姬, 赵良举, 刘朝, 等. 利用LNG冷能与工业余热的有机朗肯循环研究[J]. 工程热物理学报, 2014, 35(2): 213-217.

[68] Tamm G, Goswanmi D Y, Lu S, et al. Theoretical and experimental investigation of an ammonia-water power and refrigeration thermodynamic cycle[J]. 2004, Solar Energy, 76: 217-228.

[69] 赵巍, 杜建一, 徐建中. 微型燃气轮机与有机朗肯循环装置组成联合循环的设计与分析[J]. 中国电机工程学报, 2009, 29(29): 19-24.

[70] 刘乙成, 闫广, 高传昌, 等. 利用烟气余热的有机朗肯循环与苦咸水淡化联合系统[J]. 水电能源科学, 2013, 31(3): 156-158.

[71] Wei D H, Lu X S, Lu Z, et al. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery[J]. 2008, 28: 1216-1224.

[72] Liu H, Shao Y J, Li J X. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)– Thermodynamic modeling studies[J]. 2011, 35: 3985- 3994.

[73] 魏东红, 鲁雪生, 顾建明, 等. 移动边界模型应用于废热驱动的有机朗肯循环系统的动态仿真[J]. 上海交通大学学报, 2006, 8: 1439-1402.
文章导航

/