欢迎访问《新能源进展》官方网站!今天是
论文

三维实验模拟垂直井和水平井降压开采水合物

  • 冯景春 ,
  • 李小森 ,
  • 李 刚 ,
  • 王 屹 ,
  • 张 郁 ,
  • 陈朝阳
展开
  • 1. 中国科学院广州能源研究所广州天然气水合物研究中心,广州 510640;
    2. 中国科学院大学,北京 100049
冯景春(1988-),女,博士研究生,天然气水合物开采实验与数值模拟研究。

收稿日期: 2014-03-19

  修回日期: 2014-06-19

  网络出版日期: 2014-06-30

基金资助

国家海洋地质专项 (GHZ2012006003);中科院重点部署项目(KGZD-EW-301-2);广州科技项目(2012J5100012)

Experimental Investigation of Hydrate Dissociation Behaviors with a Vertical Well and a Horizontal Well in Three-Dimensional Reactor

  • FENG Jing-chun ,
  • LI Xiao-sen ,
  • LI Gang ,
  • WANG Yi ,
  • ZHANG Yu ,
  • CHEN Zhao-yang
Expand
  • 1. Guangzhou Center for Gas Hydrate Research, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-03-19

  Revised date: 2014-06-19

  Online published: 2014-06-30

摘要

为了研究降压法在不同井网布置条件下开采天然气水合物的机理,在水合物三维实验模拟平台中进行了垂直井和水平井降压开采实验,获得了两种布井方式的产气、产水、温度变化和三维温度空间分布情况。研究表明,在该实验条件下,利用水平井开采水合物的平均产气速率是垂直井的1.48倍,但水平井开采的产水量较大,垂直井开采的产水量则很小。三维温度分布图表明,开采过程中全釜的温度同步下降,水合物在反应釜内均匀分解,反应釜四周的温度比反应釜中心温度高,热量从边界向釜中心传递。

本文引用格式

冯景春 , 李小森 , 李 刚 , 王 屹 , 张 郁 , 陈朝阳 . 三维实验模拟垂直井和水平井降压开采水合物[J]. 新能源进展, 2014 , 2(3) : 216 -220 . DOI: 10.3969/j.issn.2095-560X.2014.03.009

Abstract

Depressurization has been considered as a practical method for its economic advantage and simplicity for operation in hydrate exploitation. In order to study the dissociation mechanism of hydrate by depressurization, this work investigated the hydrate dissociation behaviors by depressurization in a three-dimensional reactor with different well configurations. The gas production, water production, and the spatial distribution of temperature are obtained. The results indicate that the average gas production rate with the horizontal well is 1.48 times larger than that with the vertical well. For the experimental run with the horizontal well, water production variation is in line with the change of gas production. However, water production with the vertical well is neglectable. In the process of hydrate dissociation, the temperature in the edge of the reactor is higher than that in the center of the reactor, indicating that hydrate is dissociated under the effect of the heat transferred from the boundaries.

参考文献

[1] Sloan E D, Koh C A. Clathrate hydrates of natural gases[M]. 3rd Edition: CRC Press, Boca Raton, FL, 2008.

[2] Li X S, Li B, Li G, et al. Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in qilian mountain, qinghai province[J]. Energy, 2012, 40: 59-75.

[3] Li G, Moridis G J, Zhang K N, et al. Evaluation of gas production potential from marine gas hydrate deposits in shenhu area of south china sea[J]. Energy Fuels, 2010, 24: 6018-33.

[4] Moridis G J, Kowalsky M B. Depressurization-induced gas production from Class 1 and Class 2 hydrate deposits[J]. SPE Reservoir Evaluation & Engineering, 2007, 10: 458-481.

[5] Li X S, Yang B, Zhang Y, et al. Experimental investigation into gas production from methane hydrate in sedimentby depressurization in a novel pilot-scale hydrate simulator[J]. Applied Energy, 2012, 93: 722-732.

[6] Li X S, Wang Y, Duan L P, et al. Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff[J]. Applied Energy, 2012, 94: 48-57.

[7] Li X S, Yang B, Li G, et al. Experimental study on gas production from methane hydrate in porous media by huff and puff method in pilot-scale hydrate simulator[J]. Fuel, 2012, 94: 486-94.

[8] Li G, Li X S, Tang L G, et al. Experimental investigation of production behavior of methane hydrate under ethylene glycol injection in unconsolidated sediment[J]. Energy Fuels, 2007, 21(6): 3388-3393.

[9] Li X S, Wan L H, Li G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation[J]. Industrial & Engineering Chemistry Research. 2008, 47: 9696-9702.

[10] Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2[J]. Fluid Phase Equilibria, 2005, 228: 553-559.

[11] Liu B, Pan H, Wang X H, et al. Evaluation of different CH4-CO2 replacement process in hydrate-bearing sediments by measuring P-Wave velocity [J]. Energies, 2013, 6: 6242-6254.

[12] Li G, Li B, Li X S, et al. Experimental and numerical studies on gas production from methane hydrate in porous media by depressurization in pilot-scale hydrate simulator. Energy Fuels, 2012, 26(10): 6300-6310.

[13] Li X S, Zhang Y, Li G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator[J]. Energy Fuels, 2011, 25(10): 4497-4505.

[14] 庞佳春. 水平井与垂直井的动态评价[J]. 国外油田工程, 1993, 9(2): 37-44.

[15] 李小森, 冯景春, 李刚, 等. 电阻率在天然气水合物三维生成及开采过程中的变化特性模拟实验[J]. 天然气工业, 2013, 33(7): 18-23.

[16] Tang L G, Li X S, Feng Z P, et al. Control Mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy Fuels, 2007, 21: 227-233.

文章导航

/