欢迎访问《新能源进展》官方网站!今天是
论文

四丁基氯化铵半笼型水合物的相平衡模型

  • 史伶俐 ,
  • 梁德青
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049
史伶俐(1988-),女,博士研究生,主要从事天然气水合物热力学和动力学研究。

收稿日期: 2014-03-21

  修回日期: 2014-06-18

  网络出版日期: 2014-06-30

基金资助

国家自然科学基金(51176192)

Modeling Phase Equilibria of Semiclathrate Hydrates Formed with Tetrabutylammonium Chloride Solutions

  • SHI Ling-li ,
  • LIANG De-qing
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-03-21

  Revised date: 2014-06-18

  Online published: 2014-06-30

摘要

本文在范德瓦尔?普朗特理论的基础上,考虑了四丁基氯化铵(TBAC)水合物的结构特征,建立了TBAC半笼型水合物相平衡模型。模型确定了水在空水合物晶格的蒸汽压及兰格缪尔常数与TBAC浓度的关系,引用e-NRTL模型和PR气体状态方程分别计算液相组分活度系数和客体分子气相逸度。同时,本文在280.1 K ~ 293.6 K温度范围和0.337 MPa ~ 7.017 MPa压力范围内预测了TBAC质量浓度范围为4.34% ~ 34%的溶液体系下TBAC + CH4、TBAC + CO2半笼型水合物的相平衡条件,预测压力与实验数据的平均绝对偏差分别为3.2637% 和9.2258%。预测结果与实验数据吻合较好。

本文引用格式

史伶俐 , 梁德青 . 四丁基氯化铵半笼型水合物的相平衡模型[J]. 新能源进展, 2014 , 2(3) : 221 -225 . DOI: 10.3969/j.issn.2095-560X.2014.03.010

Abstract

Based on the van der Waals-Platteeuw (vdW-P) theory and the hydrate structure of tetrabutylammonium chloride (TBAC), a thermodynamic approach is proposed to determine the phase equilibrium conditions of TBAC semiclathrate hydrates in this work. Two modifications for evaluations of vapor pressure of water in the empty hydrate lattice and Langmuir constants relating to the salt concentration in aqueous solution and temperature are proposed. To obtain the activity coefficients of species in the aqueous phase and the fugacity of gaseous hydrate former in gas phase, the electrolyte-Non-Random Two-Liquid (e-NRTL) activity model and Peng-Robinson equation of state (PR-EoS) are employed, respectively. Additionally, the model predicted phase equilibrium conditions for hydrates of TBAC + CH4 and TBAC + CO2 over temperature, pressure, and salt concentration ranges from 280.1 K to 293.6 K, from 0.337 MPa to 7.017 MPa, and from 4.34% to 34%, respectively. It is shown that agreement of predicted data with experimental data is satisfactory, with average absolute pressure deviation 3.2637% and 9.2258% for hydrates of TBAC + CH4 and TBAC + CO2, respectively.

参考文献

[1] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, Taylor & Francis Group, 2008.

[2] Arjmandi M, Chapoy A, Tohidi B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide[J]. J Chem Eng Data, 2007, 52(6): 2153-2158.

[3] Deschamps J, Dalmazzone D. Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2 + CO2 and CH4 + CO2[J]. J Therm Anal Calorim, 2009, 98(1): 113-118.

[4] Fan S S, Li S F, Wang J Q, et al. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates[J]. Energy Fuels, 2009, 23(8): 4202-4208.

[5] Fowler D L, Loebenstein W V, Pall D B, et al. Some unusual hydrates of quaternary ammonium salts[J]. J Am Chem Soc, 1940, 62: 1140-1142.

[6] Jeffrey G A. Water structure in organic hydrates[J]. Acc Chem Res, 1969, 2(11): 344-352.

[7] Paricaud P. Modeling the dissociation conditions of salt hydrates and gas semiclathrate hydrates: application to lithium bromide, hydrogen iodide, and tetra-n-butylammonium bromide plus carbon dioxide systems[J]. J Phys Chem B, 2011, 115(2): 288-299.

[8] Eslamimanesh A, Mohammadi A H, Richon D. Thermodynamic modeling of phase equilibria of semi- clathrate hydrates of CO2, CH4, or N2 + tetra-n- butylammonium bromide aqueous solution[J]. Chem Eng Sci, 2012, 81: 319-328.

[9] Tumba K, Reddy P, Naidoo P, et al. Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethyl- phosphonium methylsulfate ionic liquid[J]. J Chem Eng Data, 2011, 56(9): 3620-3629

[10] Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. Aiche J, 1968, 14(1): 135-144.

[11] Belveze L S, Brennecke J F, Stadtherr M A. Modeling of activity coefficients of aqueous solutions of quaternary ammonium salts with the electrolyte-NRTL equation[J]. Ind Eng Chem Res, 2004, 43(3): 815-825.

[12] Rodionova T, Komarov V, Villevald G, et al. Calorimetric and structural studies of tetrabutylammonium chloride ionic clathrate hydrates[J]. J Phys Chem B, 2010, 114(36): 11838-11846.

[13] Lindenbaum S, Boyd G E. Osmotic and activity coefficients for symmetrical tetraalkyl ammonium halides in aqueous solution at 25 degrees[J]. J Phys Chem, 1964, 68(4): 911-917.

[14] Sun Z G, Liu C G.. Equilibrium conditions of methane in semiclathrate hydrates of tetra-n-butylammonium chloride[J]. J Chem Eng Data, 2012, 57(3): 978-981.

[15] Makino T, Yamamoto T, Nagata K, et al. Thermodynamic stabilities of tetra-n-butyl ammonium chloride + H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems[J]. J Chem Eng Data, 2010, 55(2): 839-841.

[16] Li S, Fan S, Wang J, et al. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride)[J]. J Chem Eng Data, 2010, 55(9): 3212-3215.

文章导航

/