电磁力对导电流体二维流动的影响
收稿日期: 2014-03-30
修回日期: 2014-06-24
网络出版日期: 2014-06-30
基金资助
国家海洋可再生能源专项资金项目(GHME2013ZB01)
The Effect of Electromagnetic Force on Conducting Fluid Flowing in 2D
Received date: 2014-03-30
Revised date: 2014-06-24
Online published: 2014-06-30
刘 洋 , 游亚戈 , 叶 寅 , 曹雪玲 . 电磁力对导电流体二维流动的影响[J]. 新能源进展, 2014 , 2(3) : 226 -232 . DOI: 10.3969/j.issn.2095-560X.2014.03.011
Conducting fluid flowing through the electromagnetic field can generate a force called electromagnetic force. The electromagnetic force can change the flow of conducting fluid. This paper models and simulates the incompressible, viscous, conducting fluid flowing with different applied conditions. The numerical results show that: (1) The electromagnetic force is up to the applied electric and magnetic field. The electromagnetic force will be different when the applied electric and magnetic field are different. Specifically, for the flowing between two electrode plates where the applied magnetic field is perpendicular to, the electromagnetic force increases with the increase of the applied electric and magnetic field. While when the inlet velocity becomes larger, the influence of electromagnetic force will become smaller. (2) The phenomenon of edge effect near the electrodes will affect the conducting fluid flow.
Key words: electromagnetic field; conducting fluid; electromagnetic force; flow in 2D
[1] MHD generator[DB/OL]. http://en.wikipedia.org/wiki/ M-HD_generator, 27 November, 2013.
[2] 吴其芬, 李桦. 磁流体力学[M]. 长沙: 国防科技大学出版社, 2007. 1-22.
[3] 吴望一. 流体力学(下册)[M]. 北京: 北京大学出版社, 2010. 213-223.
[4] Gerbeau J F, Bris C L, Lelièvre T. Mathematical Methods for the Magnetohydrodynamics of Liquid Metals[M]. New York: Oxford Science Publications, the Unite States, 2006. 26-28.
[5] 谭作武, 恽嘉陵. 磁流体推进[M]. 北京: 北京工业大学出版社, 1998. 30-34.
[6] Jackson J D. Classical Electrodynamics[M]. Color-ado: Samizdat Press, 1996. 29-31.
[7] Barnes G, MacGregor K B. On the magnetohydrodynamics of a conducting fluid between two flat plates[J]. Physics of Plasmas, 1999, 6: 3030-3046.
[8] Ramos J I, Winowich N S. Magnetohydrodynamic channel flow study[J]. Phys. Fluids, 1986, 29: 992-997.
[9] Drake D G, Abu-Sitta A M. Magnetohydrodyn-amic flow in a rectangular channel at high Hartmann number[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1965, 4: 519-528.
[10] Sheikin E G. Calculation of the electric potential and Lorentz force acting on a locally ionized region in a magnetohydrodynamic flow placed in a nonuniform magnetic field[J]. Technical Physics, 2009, 54(2): 221-228.
[11] Tzirtzilakis E E, Xenos M A. Biomagnetic fluid flow in a driven cavity[J]. Meccanica, 2013, (48): 187-200.
[12] 刘婵, 胡军, 张年梅, 等. 绝缘方腔中MHD流体流动的[C]//中国力学大会, 2013.
[13] 黄子洋, 王志泳, 刘亚俊. 对外输出电能条件下磁流体态与发效率[C]//中国力学大会, 2013.
[14] 郭硕鸿. 电动力学[M]. 北京: 高等教育出版社, 1997. 32-38.
[15] Salaha N B, Soulaimania A, Habashi W G. A finite element method for magnetohydrodynamics[J]. Computer Methods in Applied Mechanics Engineering, 2001, (190): 5867-5892.
/
〈 |
|
〉 |