欢迎访问《新能源进展》官方网站!今天是
论文

循环充放电条件下锂离子电池的温度模拟

  • 孙秋娟 ,
  • 王青松 ,
  • 平 平 ,
  • 赵学娟
展开
  • 中国科学技术大学  火灾科学国家重点实验室,合肥 230026
孙秋娟(1988-),女,硕士研究生,主要从事锂离子电池热失控模拟研究。

收稿日期: 2014-03-20

  修回日期: 2014-05-22

  网络出版日期: 2014-08-30

基金资助

国家自然科学基金面上项目(51176183);教育部“新世纪优秀人才支持计划”(NCET-12-0514)

Simulation on the Temperature of Lithium-Ion Battery during Charge-Discharge Cycling

  • SUN Qiu-juan ,
  • WANG Qing-song ,
  • PING Ping ,
  • ZHAO Xue-juan
Expand
  • State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China

Received date: 2014-03-20

  Revised date: 2014-05-22

  Online published: 2014-08-30

摘要

锂离子电池在充放电过程中产生的热量主要为两部分,即因电化学反应而产生的可逆热和由极化产生的不可逆热。若电池内部温度达到82℃以上时,钴酸锂电池材料将发生热分解,引发一系列不可控化学反应,释放出大量的反应热。本论文在可逆热和不可逆热的基础上,耦合电池材料分解热,采用有限元技术,模拟锂离子电池在充放电过程中不同对流条件以及不同外界温度下电池内部温度的变化,为揭示锂离子电池热失控机制提供理论依据。

本文引用格式

孙秋娟 , 王青松 , 平 平 , 赵学娟 . 循环充放电条件下锂离子电池的温度模拟[J]. 新能源进展, 2014 , 2(4) : 315 -321 . DOI: 10.3969/j.issn.2095-560X.2014.04.0012

Abstract

The heat generation for lithium-ion batteries is composed of the reversible heat caused by the electrochemical reaction and the irreversible heat due to polarization during charge-discharge cycling. The materials of cobalt acid lithium battery begin to decompose once the internal temperature of the battery reached 82oC. A series of uncontrolled chemical reactions are triggered, resulting in releasing a large amount of heat. With the aid of finite element technology, the reversible, irreversible heat and the decomposition heat are both considered in this work to simulate the internal temperature variation of lithium-ion batteries under different cooling conditions and ambient temperatures, which can provide theoretical basis to disclose the thermal runaway mechanism for this kind of battery.

参考文献

[1] 王青松, 孙金华, 何理. 锂离子电池安全性特点及热模型研究[J]. 中国安全生产科学技术, 2005, 1(3): 19-21.

[2] Kumaresan K, Sikha G, White R E. Thermal Model for Li-ion cell[J]. Journal of the Electrochemical Society, 2008, 155(2): A164-A171.

[3] Doyle M, Newman J, Gozdz A S. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.

[4] 卢立丽, 王松蕊, 刘兴江. 锂离子电池电化学模拟模型的比较[J]. 电源技术, 2011, 35(7): 765-767.

[5] 李腾, 林成涛, 陈全世. 锂离子电池热模型研究进  展[J]. 电源技术, 2009, 33(10): 927-932.

[6] Bernadi D, Pawlikowski E, Newman J. A General Energy Balance for Battery Systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.

[7] 李腾, 林成涛, 陈全世. 锂离子电池三维多层多物理场模型[J]. 清华大学学报(自然科学版), 2012, 52(7): 995-1000.

[8] Chen S C, Wan C C, Wang Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124.

[9] 何亮明, 杜翀. 圆柱形锂离子电池的三维热模拟[J]. 电池工业, 2010, 15(3): 151-155.

[10] Kim G H, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489.

[11] 周苏, 孙晓燕, 纪光霁, 等. 基于传质现象的锂电池机理建模[J]. 武汉科技大学学报(自然科学版), 2012, 34(6): 467-472.

[12] Shi D H. Stress analysis of these paratorina lithium-ion battery[D]. Michigan State University Mechanical Engineering, 2011.

[13] 王青松, 孙金华, 姚晓林, 等. 锂离子电池中的热效 应[J]. 应用化学, 2006, 23(5): 489-493.

文章导航

/