[1] Lim J S, Manan Z A, Alwi S R W, et al. A review on utilisation of biomass from rice industry as a source of renewable energy[J]. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3084-3094.
[2] Vitali F, Parmigiani S, Vaccari M, et al. Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries[J]. Waste Management, 2013, 33(12): 2762-2770.
[3] 中华人民共和国国家统计局. 中国统计年鉴[R]. 北京: 中国统计出版社, 2013.
[4] 李琳娜, 应浩, 孙云娟, 等. 我国稻壳资源化利用的研究进展[J]. 生物质化学工程, 2010, 44(1): 34-38.
[5] Shi W S, Liu C G, Shu Y J, et al. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: Fate and environmental risk of heavy metals[J]. Bioresource Technology, 2013, 149: 496-502.
[6] Hu J J, Lei T Z, Wang Z W, et al. Economic, environmental and social assessment of briquette fuel from agricultural residues in China−A study on flat die briquetting using corn stalk[J]. Energy, 2014, 64: 557-566.
[7] Shi W, Li S, Jin H, et al. The Hydrothermal Liquefaction of Rice Husk to Bio-crude Using Metallic Oxide Catalysts[J]. Energy Sources Part a-Recovery Utilization and Environmental Effects, 2013, 35(22): 2149-2155.
[8] Pokoj T, Klimiuk E, Budzynski W, et al. Theoretical and observed biogas production from plant biomass of different fibre contents[J]. Bioresource Technology, 2010, 101(24): 9527-9535.
[9] Buswell A M, Mueller H F, Mechanism of Methane Fermentation[J]. Industrial and Engineering Chemistry, 1952, 44(3): 550-552.
[10] Hendriks A T W M, Zeeman G, Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18.
[11] Herrmann C, Prochnow A, Heiermann M, et al. Particle Size Reduction During Harvesting of Crop Feedstock for Biogas Production II: Effects on Energy Balance, Greenhouse Gas Emissions and Profitability[J]. Bioenergy Research, 2012, 5(4): 937-948.
[12] Agyeman FO, Tao W D. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate[J]. Journal of Environmental Management, 2014, 133: 268-274.
[13] Ferreira L C, Nilsen P J, Fdz-Polanco F, et al. Biomethane potential of wheat straw: Influence of particle size, water impregnation and thermal hydrolysis[J]. Chemical Engineering Journal, 2014, 242: 254-259.
[14] Cho S K, Kim D H, Yun Y M, et al. Statistical optimization of mixture ratio and particle size for dry co-digestion of food waste and manure by response surface methodology[J]. Korean Journal of Chemical Engineering, 2013, 30(7): 1493-1496.
[15] 陈平. 生物质流化床气化机理与工业应用研究[D]. 合肥: 中国科学技术大学, 2006.
[16] Mussoline W, Esposito G, Giordano A, et al. The Anaerobic Digestion of Rice Straw: A Review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(9): 895-915.
[17] Rajagopal R, Masse D I, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641.
[18] 李东, 孙永明, 袁振宏, 等. 食物垃圾和废纸联合厌氧消化产甲烷[J]. 环境科学学报, 2009, 29(3): 577 - 583.
[19] 李东, 叶景清, 孙永明, 等. 稻草与牛粪混合连续厌氧消化制备生物燃气研究[J]. 农业机械学报, 2013, 44(1): 101-105.
[20] 李东, 叶景清, 甄峰, 等. 稻草与鸡粪配比对混合厌氧消化产气率的影响[J]. 农业工程学报, 2013, 29(2): 232-238.
[21] 白云生. 厌氧序批式反应器(ASBR)碱度需求特征研究[D]. 太原: 太原理工大学, 2006.
[22] 褚华宁, 张仁志, 韩恩山. 碱度在厌氧中的影响及有效控制方法[J]. 环境研究与监测, 2006, 19(3): 50-52.
[23] 王瑞元, 朱永义, 谢健, 等. 我国稻谷加工业现状与展望[J]. 粮食与饲料工业, 2011, (3): 1-5.
[24] 王亚静, 毕于运, 高春雨. 中国秸秆资源可收集利用量及其适宜性评价[J]. 中国农业科学, 2010, 43(9): 1852-1859.