欢迎访问《新能源进展》官方网站!今天是
论文

稻壳与玉米秆高温厌氧发酵制备生物燃气潜力研究

  • 施晨璐 ,
  • 李连华 ,
  • 孙永明
展开
  • 1. 广东省生态环境与土壤研究所,广州 510650;
    2. 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广州 510640
施晨璐(1977-),女,硕士,主要从事农业环境污染修复工程研究。

收稿日期: 2014-08-18

  修回日期: 2014-08-20

  网络出版日期: 2014-08-30

基金资助

国家863计划(2012AA101803)

Thermophilic Anaerobic Digestion Performance of Rice Husk and Corn Stalk

  • SHI Chen-lu ,
  • LI Lian-hua ,
  • SUN Yong-ming
Expand
  • 1. Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2014-08-18

  Revised date: 2014-08-20

  Online published: 2014-08-30

摘要

研究了玉米秆和稻壳在固体浓度为6%时的高温(50℃)发酵性能,并分析了发酵过程中氨氮浓度、碱度及挥发性脂肪酸等参数的变化情况。结果表明,玉米秆和稻壳的挥发性物质产甲烷率接近,分别为(157.67 ± 3.00)mL/g VS和(155.83 ± 6.25)mL/g VS,挥发性物质去除率分别为(53.38 ± 0.81)% 和(42.67 ± 0.3)%。但稻壳相比于玉米秆无需粉碎,降低了输入能耗。发酵过程中氨氮浓度及挥发性脂肪酸数值低于抑制浓度,且碱度对发酵系统酸浓度变化具有很好的缓冲能力,可见玉米秆和稻壳适宜作为沼气工程的原料,并可在6%的固体浓度及高温条件下稳定发酵。

本文引用格式

施晨璐 , 李连华 , 孙永明 . 稻壳与玉米秆高温厌氧发酵制备生物燃气潜力研究[J]. 新能源进展, 2014 , 2(4) : 264 -269 . DOI: 10.3969/j.issn.2095-560X.2014.04.004

Abstract

The anaerobic digestion performance of corn stalk and rice husk was studied at solids concentration of 6% and high-temperature (50oC), and process parameters such as the concentration of ammonia, alkalinity and volatile fatty acids were analyzed. The results showed that specific methane yields of corn stalk and rice husk were (157.67 ± 3.00) mL/g VS and (155.83 ± 6.25) mL/g VS, the removal rate of volatile solid were (53.38 ± 0.81)% and (42.67 ± 0.3)%, respectively. However, compared to the corn stalk, rice husk needs less input energy. The concentrations of ammonia and volatile fatty acid below the inhibitory concentration, and the alkalinity has good buffering capacity for the change of acid concentration. So corn stalk and rice husk are suitable as raw material for biogas plant, which are stable at high temperature and solids concentration of 6%.

参考文献

[1] Lim J S, Manan Z A, Alwi S R W, et al. A review on utilisation of biomass from rice industry as a source of renewable energy[J]. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3084-3094.

[2] Vitali F, Parmigiani S, Vaccari M, et al. Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries[J]. Waste Management, 2013, 33(12): 2762-2770.

[3] 中华人民共和国国家统计局. 中国统计年鉴[R]. 北京: 中国统计出版社, 2013.

[4] 李琳娜, 应浩, 孙云娟, 等. 我国稻壳资源化利用的研究进展[J]. 生物质化学工程, 2010, 44(1): 34-38.

[5] Shi W S, Liu C G, Shu Y J, et al. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: Fate and environmental risk of heavy metals[J]. Bioresource Technology, 2013, 149: 496-502.

[6] Hu J J, Lei T Z, Wang Z W, et al. Economic, environmental and social assessment of briquette fuel from agricultural residues in China−A study on flat die briquetting using corn stalk[J]. Energy, 2014, 64: 557-566.

[7] Shi W, Li S, Jin H, et al. The Hydrothermal Liquefaction of Rice Husk to Bio-crude Using Metallic Oxide Catalysts[J]. Energy Sources Part a-Recovery Utilization and Environmental Effects, 2013, 35(22): 2149-2155.

[8] Pokoj T, Klimiuk E, Budzynski W, et al. Theoretical and observed biogas production from plant biomass of different fibre contents[J]. Bioresource Technology, 2010, 101(24): 9527-9535.

[9] Buswell A M, Mueller H F, Mechanism of Methane Fermentation[J]. Industrial and Engineering Chemistry,  1952, 44(3): 550-552.

[10] Hendriks A T W M, Zeeman G, Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology,  2009, 100(1): 10-18.

[11] Herrmann C, Prochnow A, Heiermann M, et al. Particle Size Reduction During Harvesting of Crop Feedstock for Biogas Production II: Effects on Energy Balance, Greenhouse Gas Emissions and Profitability[J]. Bioenergy Research, 2012, 5(4): 937-948.

[12] Agyeman FO, Tao W D. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate[J]. Journal of Environmental Management, 2014, 133: 268-274.

[13] Ferreira L C, Nilsen P J, Fdz-Polanco F, et al. Biomethane potential of wheat straw: Influence of particle size, water impregnation and thermal hydrolysis[J]. Chemical Engineering Journal, 2014, 242: 254-259.

[14] Cho S K, Kim D H, Yun Y M, et al. Statistical optimization of mixture ratio and particle size for dry co-digestion of food waste and manure by response surface methodology[J]. Korean Journal of Chemical Engineering, 2013, 30(7): 1493-1496.

[15] 陈平. 生物质流化床气化机理与工业应用研究[D]. 合肥: 中国科学技术大学, 2006.

[16] Mussoline W, Esposito G, Giordano A, et al. The Anaerobic Digestion of Rice Straw: A Review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(9): 895-915.

[17] Rajagopal R, Masse D I, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641.

[18] 李东, 孙永明, 袁振宏, 等. 食物垃圾和废纸联合厌氧消化产甲烷[J]. 环境科学学报, 2009, 29(3): 577 - 583.

[19] 李东, 叶景清, 孙永明, 等. 稻草与牛粪混合连续厌氧消化制备生物燃气研究[J]. 农业机械学报, 2013, 44(1): 101-105.

[20] 李东, 叶景清, 甄峰, 等. 稻草与鸡粪配比对混合厌氧消化产气率的影响[J]. 农业工程学报, 2013, 29(2): 232-238.

[21] 白云生. 厌氧序批式反应器(ASBR)碱度需求特征研究[D]. 太原: 太原理工大学, 2006.

[22] 褚华宁, 张仁志, 韩恩山. 碱度在厌氧中的影响及有效控制方法[J]. 环境研究与监测, 2006, 19(3): 50-52.

[23] 王瑞元, 朱永义, 谢健, 等. 我国稻谷加工业现状与展望[J]. 粮食与饲料工业, 2011, (3): 1-5.

[24] 王亚静, 毕于运, 高春雨. 中国秸秆资源可收集利用量及其适宜性评价[J]. 中国农业科学, 2010, 43(9): 1852-1859.

 
文章导航

/