热储分层影响EGS采热的数值模拟研究
收稿日期: 2014-05-23
修回日期: 2014-07-09
网络出版日期: 2014-08-30
基金资助
国家高技术发展863计划项目(2012AA052802);中国科学院“百人计划”项目
Numerical Study of EGS Heat Extraction from Stratified Heat Reservoirs
Received date: 2014-05-23
Revised date: 2014-07-09
Online published: 2014-08-30
由于岩石构造不同、天然裂隙的差异以及压裂过程的随机性等因素,增强型地热系统(EGS)人工热储通常具有较强的非均质性。探究热储的非均质性对EGS热开采过程的影响,对EGS性能预测与分析评价有重要意义。论文考虑到热储沿深度方向的非均质性,基于等效分层多孔介质物理模型,并使用自主开发的EGS数值模型,模拟了多个具有分层热储EGS的长期运行过程,发现热储深度方向上非均质性对热能的开采影响显著,而流量分布的不均匀性是导致系统采热性能下降的主要原因。为了方便分析和评价,我们建立一种新的定量化描述热储非均质性的方法,然后基于更多的非均质热储EGS算例结果,拟合得到EGS采热性能与热储非均质性的定量关系式。
关键词: 增强型地热系统(EGS); 数值模拟; 等效分层多孔介质; 非均质性
黄文博 , 陈继良 , 蒋方明 . 热储分层影响EGS采热的数值模拟研究[J]. 新能源进展, 2014 , 2(4) : 295 -304 . DOI: 10.3969/j.issn.2095-560X.2014.04.009
Strong heterogeneity exists in enhanced geothermal systems (EGS) artificial heat reservoir due to factors such as different rock formations, the pre-existence of natural fractures and the uncertainty of stimulation process. Exploring the influence of reservoir heterogeneity on EGS heat extraction is of great importance for predicting and comprehensively evaluating the performance of EGS. In this paper, we take the reservoir as an equivalent stratified porous medium and employ the previously self-developed numerical model to conduct a series of simulations of the long-term heat extraction process of EGSs with different reservoir porosity distributions. Results indicate that the heat extraction performance is significantly affected by the reservoir heterogeneity. To facilitate the analysis and evaluation, we derive a formula to quantitatively describe the heterogeneity of the reservoir based on a detailed analysis to the effects of the fluid seepage flow field on the heat extraction performance. Further, we obtain a quantitative relationship of EGS heat extraction performance versus reservoir heterogeneity by fitting the calculated results from 30 cases, in which the stratified reservoirs are randomly assigned with differing porosity distributions.
[1] Tester J W, Anderson B J, Batchelor A S, et al. The future of geothermal energy[R]. Massachusetts Institute of Technology, 2006.
[2] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811.
[3] 汪集暘, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 地热能, 2013, (3): 3-10.
[4] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45.
[5] 郭剑, 陈继良, 曹文炅, 等. 增强型地热系统研究综 述[J]. 电力建设, 35(4): 10-24.
[6] Breede K, Dzebisashvili K, Liu X, et al. A systematic review of enhanced (or engineered) geothermal systems: past, present and future[J]. Geothermal Energy, 2013, 1(1): 4.
[7] McClure M W. Fracture stimulation in enhanced geothermal systems[D]. California: Stanford University, 2009.
[8] Dezayes C, Genter A, Hooijkaas G R. Deep-seated geology and fracture system of the EGS Soultz reservoir (France) based on recent 5km depth boreholes[C]// Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April, 2005.
[9] Genter A, Evans K, Cuenot N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342(7): 502-516.
[10] Jung A, Fenwick D H, Caers J. Training image-based scenario modeling of fractured reservoirs for flow uncertainty quantification[J]. Computational Geosciences, 2013, 17(6): 1015-1031.
[11] Berkowitz B. Characterizing flow and transport in fractured geological media: A review[J]. Advances in water resources, 2002, 25(8): 861-884.
[12] Dershowitz W S, La Pointe P R, Doe T W. Advances in discrete fracture network modeling[C]//Proceedings of the US EPA/NGWA Fractured Rock Conference, Portland. 2004: 882-894.
[13] Jiang F, Luo L, Chen J. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International Communications in Heat and Mass Transfer, 2013, 41: 57-62.
[14] 陈继良, 蒋方明. 增强型地热系统热开采性能的数值模拟分析[J]. 可再生能源, 2013, 31(012): 111-117.
[15] 陈继良, 罗良, 蒋方明. 热储周围岩石热补偿对增强型地热系统采热过程的影响[J]. 计算物理, 2013, 30(6): 862-870.
[16] 陈继良, 蒋方明, 罗良. 增强型地热系统地下渗流场的模拟分析[J]. 计算物理, 2013, 30(6): 871-878.
[17] Arbogast T, Douglas, Jr J, Hornung U. Derivation of the double porosity model of single phase flow via homogenization theory[J]. SIAM Journal on Mathematical Analysis, 1990, 21(4): 823-836.
[18] Gelet R, Loret B, Khalili N. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2012, 117(B7): B07205-B07228.
[19] Pruess K. The TOUGH codes−A family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose Zone Journal, 2004, 3(3): 738-746.
[20] Xu T, Spycher N, Sonnenthal E, et al. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions[J]. Computers & Geosciences, 2011, 37(6): 763-774.
[21] Kalinina E, McKenna S A, Hadgu T, et al. Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model[C]// Proceedings, 37th Workshop on Geothermal Res. Eng., Stanford Univ., Stanford, CA, Jan. 2012.
[22] Shaik A R, Rahman S S, Tran N H, et al. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 2011, 31(10): 1600-1606.
[23] Vogt C, Marquart G, Kosack C, et al. Estimating the permeability distribution and its uncertainty at the EGS demonstration reservoir Soultz-sous-Forêts using the ensemble Kalman filter[J]. Water Resources Research, 2012, 48(8): W08517-W08531.
[24] Vogt C, Kosack C, Marquart G. Stochastic inversion of the tracer experiment of the enhanced geothermal system demonstration reservoir in Soultz-sous-Forêts−Revealing pathways and estimating permeability distribution[J]. Geothermics, 2012, 42: 1-12.
[25] Fourar M. Characterization of heterogeneities at the core-scale using the equivalent stratified porous medium approach[C]//SCA International Symposium. Trondheim, Norway. 2006.
[26] Radilla G, Sausse J, Sanjuan B, et al. Interpreting tracer tests in the enhanced geothermal system (EGS) of Soultz-sous-Forêts using the equivalent stratified medium approach[J]. Geothermics, 2012, 44: 43-51.
[27] Blöcher M G, Zimmermann G, Moeck I, et al. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir[J]. Geofluids, 2010, 10(3): 406-421.
[28] Luo F, Xu R N, Jiang P X. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS)[J]. Energy, 2014, 64: 307-322.
[29] Luo F, Xu R N, Jiang P X. Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced CH4recovery[J]. Applied Energy, 2013, 102: 1314-1323.
[30] He L W, Jin Z H. A local thermal nonequilibrium poroelastic theory for fluid saturated porous media[J]. Journal of Thermal Stresses, 2010, 33(8): 799-813.
[31] Lai K H, Chen J S, Liu C W, et al. Effect of permeability–porosity functions on simulated morphological evolution of a chemical dissolution front[J]. Hydrological Processes, 2014, 28(1): 16-24.
[32] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 1999. 30-37.
/
| 〈 |
|
〉 |