欢迎访问《新能源进展》官方网站!今天是
论文

甲基磺酸和硫酸作为钒电池负极混合支持电解质

  • 陈 勇 ,
  • 刘素琴 ,
  • 韩慧果 ,
  • 刘剑蕾
展开
  • 中南大学,化学化工学院,长沙 410083
陈 勇(1989-),男,硕士研究生,主要从事钒电池电解液研究。

收稿日期: 2014-04-25

  修回日期: 2014-05-06

  网络出版日期: 2014-08-30

基金资助

973国家重点基础研究发展计划(2010CB227201)

Sulfate-Methanesulfonic Acid Mixed Electrolytes for the Negative Electrolyte of Vanadium Battery

  • CHEN Yong ,
  • LIU Su-qin ,
  • HAN Hui-guo ,
  • LIU Jian-lei
Expand
  • College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China

Received date: 2014-04-25

  Revised date: 2014-05-06

  Online published: 2014-08-30

摘要

本文研究了甲基磺酸和硫酸混酸作为负极电解液混合支持电解质对V(III)电解液的电化学性能、稳定性、运动粘度和电池性能的影响。结果表明:以甲基磺酸和硫酸为混合支持电解质能提高V(II)/V(III)电对反应的可逆性,延迟电解液在低温下出现结晶的时间,降低电解液的运动粘度。但对电池性能有不良的影响,降低了电池库伦效率,加速了负极电解液中的钒离子向正极迁移,加快了电池容量和能量的衰减。

本文引用格式

陈 勇 , 刘素琴 , 韩慧果 , 刘剑蕾 . 甲基磺酸和硫酸作为钒电池负极混合支持电解质[J]. 新能源进展, 2014 , 2(4) : 322 -326 . DOI: 10.3969/j.issn.2095-560X.2014.04.013

Abstract

The effects of the sulfate-methanesulfonic acid mixed electrolytes on the electrochemical performance, stability, kinetic viscosity and cell performance of the negative electrolytes are studied. The results indicate the sulfate-methanesulfonic acid mixed electrolytes could improve the reversibility of the V(II)/V(III) redox couple, delay the time for crystal at low temperature, and decrease the kinetic viscosity of the electrolytes. However, it would decrease the coulombic efficiency of battery, promote the migration of the vanadium ion, and accelerate the decay of capacity and energy.

参考文献

[1] 刘素琴, 黄可龙, 刘又年, 等. 储能机液流电池研发热点及前景[J]. 电池, 2005, 35(5): 356-359.

[2] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.

[3] Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8): R55-R79.

[4] 褚德成, 姚立为. 全钒氧化还原贮能电池制备方法的研究[J]. 应用能源技术, 2000, (2): 13-14.

[5] 张华民, 周汉涛, 赵平, 等. 储能技术的研究开发现状及展望[J]. 能源工程, 2005, (3): 1-7.

[6] 赵平, 张华民, 王宏, 等. 全钒液流储能电池研究现状及展望[J]. 沈阳理工大学学报, 2009, 28(2): 1-6.

[7] Sum E, Skyllas-Kazaco M.. A study of the V(II)/(III) redox couple for redox flow cell application[J]. Journal of Power Source, 1985, 15(5): 179-190.

[8] Skyllas-Kazacos M, Kasherman D, Hong D R, et al. Characteristics and performance of 1 kW UNSW vanadium redox battery[J]. Journal of Power Sources, 1991, 35(4): 399-404.

[9] 管涛, 林茂财, 余晴春. 添加剂对电解液及钒电池性能的影响[J]. 电池, 2011, 41(6): 325-327.

[10] 刘联, 刘效疆, 李晓兵, 等. 对甲苯磺酸对钒电池负极液的影响[J]. 电源技术, 2010, 34(6): 552-555.

[11] 李小山, 谢晓峰, 吕亚非. 全钒液流电池阴极电解液稳定性[J]. 化工学报,2011, 62(S2): 140-143.

[12] Li L Y, Kim S, Wang W, et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage[J]. Advance Energy Materials, 2011, 1(3): 394-400.

[13] Peng S, Wang N F, Wu X J, et al. Vanadium species in CH3SO3H and H2SO4 mixed acid as the supporting electrolyte for vanadium redox flow battery[J]. International Journal of Electrochemical Science, 2012, 7(1): 643-649.

文章导航

/