欢迎访问《新能源进展》官方网站!今天是
论文

基于小波变换和支持向量机的短期光伏发电功率预测

  • 罗 毅 ,
  • 邢校萄
展开
  • 华北电力大学,北京 102206
罗 毅(1969-),男,博士,教授,主要从事复杂系统建模与仿真、优化控制与决策研究。

收稿日期: 2014-08-29

  修回日期: 2014-09-21

  网络出版日期: 2014-10-30

基金资助

国家自然科学基金(61273144)

Short-term Forecasting of Photovoltaic Power Generation Based on Wavelet Decomposition and Support Vector Machine

  • LUO Yi ,
  • XING Xiao-tao
Expand
  • North China Electric Power University, Beijing 102206, China

Received date: 2014-08-29

  Revised date: 2014-09-21

  Online published: 2014-10-30

摘要

光伏发电功率预测是减小大规模光伏发电并网对电网造成不良影响的有效手段,对电网调度及光伏电站的优化运行具有重要意义。针对光伏发电功率序列的周期性和非平稳性,本文提出了基于小波变换和支持向量机(Support vector machine, SVM)的预测方法。文中对原始功率序列进行小波分解并单支重构,构成低频趋势信号和高频随机信号,利用具有小样本学习能力强和计算简单等特点的SVM对各小波数据序列分别预测,最终将各预测值合成得到预测功率值。某光伏发电站的实际数据仿真验证了该预测方法的可行性和有效性。

本文引用格式

罗 毅 , 邢校萄 . 基于小波变换和支持向量机的短期光伏发电功率预测[J]. 新能源进展, 2014 , 2(5) : 380 -384 . DOI: 10.3969/j.issn.2095-560X.2014.05.009

Abstract

 Photovoltaic power prediction is an effective way to reduce adverse effects caused by the large-scale photovoltaic power connected to grid, and it is of great significance for power grid scheduling and optimal operation of the photovoltaic power station. Considering the cyclical and non-stationary of photovoltaic power sequence, this paper provides a prediction method based on wavelet transform and support vector machine (SVM). By wavelet decomposition and single refactoring, photovoltaic power sequence is converted to the low frequency trend signal and high frequency random signal. In consideration of strong small sample learning ability and small amount of calculation which SVM has, every wavelet signal are separately forecasted with support vector machine models. Finally, the predicted results of original photovoltaic power sequence are achieved by merging every single forecasted value. The actual data simulation validation of a photovoltaic power station shows the feasibility and effectiveness of this prediction method.

参考文献

[1] 王海瑛, 白小民, 马纲. 并网光伏电站的发电可靠性评估[J]. 电网技术, 2012, 36(10): 1-5.

[2] Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.

[3] Yong A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]//2007 Power Engineering Society General Meeting, Tampa, FL, 2007.

[4] 李春华, 朱新建. 基于混合储能的光伏微网动态建模与仿真[J]. 电网技术, 2013, 37(1): 39-46.

[5] 李乃永, 梁军, 赵义术. 并网光伏电站的动态建模与稳定性研究[J]. 中国电机工程学报, 2011, 31(10): 12-18.

[6] 胡波, 野中佑斗, 横山隆一. 大规模光伏系统并网对配电网的影响(英)[J]. 电力系统自动化, 2012, 36(3): 34-38.

[7] 周林, 曾意, 郭珂, 等. 具有电能质量调节功能的光伏并网系统研究进展[J]. 电力系统保护与控制, 2012, 40(9): 137-145.

[8] 陈炜, 艾欣, 吴涛, 等. 光伏并网发电系统对电网的影响研究综述[J]. 电力自动化设备, 2013, 33(2): 26-32.

[9] Tina G, Gagliano S, Raiti S. Hybrid solar wind power system probabilistic modeling for long-term performance assessment[J]. Solar Energy, 2006, 80(5): 578-588.

[10] 曹潇, 陈志宝, 周海, 等. 基于地基云图分析的光伏功率预测系统设计[J]. 电力信息化, 2013, 11(3): 1-6.

[11] 丁明, 徐宁舟. 基于马尔科夫链的光伏发电系统输出功率短期预测方法[J]. 电网技术, 2011, 35(1): 152-157.

[12] Mellit A, Pavan A M. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy[J]. Solar Energy, 2010, 84(5): 807-821.

[13] 李星, 晁勤, 任娟, 等. 基于BP神经网络的光伏发电功率预测模型研究[J]. 水力发电, 2013, 39(7): 100-102.

[14] 袁晓玲, 施俊华, 徐杰彦. 基于BP神经网络的光伏发电短期处理预测[J]. 可再生能源, 2013, 31(7): 11-16.

[15] 栗然, 李广敏. 基于支持向量机回归的光伏发电出力预测[J]. 中国电力, 2008, 41(2): 74-78.

[16] 罗毅, 千雨乐. 基于相空间重构与支持向量机的光伏阵列发电量预测[C]//第四届电能质量及柔性输电技术研讨会, 呼和浩特. 2012.

[17] 杨德全, 王艳, 焦彦军. 基于小波神经网络的光伏系统发电量预测[J]. 可再生能源, 2013, 31(7): 1-5.

[18] 曾振东. 基于灰色支持向量机的网络舆情预测模型[J]. 计算机应用与软件, 2014, 31(2): 300-311.

[19] 范思遐, 周奇才, 熊肖磊, 等. 基于粒子群与支持向量机的隧道变形预测模型[J]. 计算机工程与应用, 2014, 50(5): 6-15.

[20] 王江荣. 基于二阶粒子群优化的支持向量机回归在炉龄预测中的应用[J]. 自动化与仪器仪表, 2014, 1: 93-95.

[21] 姚宝珍, 杨成永, 于滨. 动态公交车辆运行时间预测模型[J]. 系统工程学报, 2010, 25(3): 365-370.

文章导航

/