欢迎访问《新能源进展》官方网站!今天是
论文

天然气水合物导热性能研究现状

  • 万丽华 ,
  • 梁徳青 ,
  • 关进安
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院天然气水合物重点实验室,广州 510640
万丽华(1976-),女,博士,副研究员,主要从事天然气水合物物性基础研究。

收稿日期: 2014-07-11

  修回日期: 2014-08-27

  网络出版日期: 2014-10-30

基金资助

国家自然科学基金(51106163,51206169);中国科学院知识创新工程(KGZD-EW-301)

The Present Situation of Studies on Thermal Conduction of Gas Hydrate

  • WAN Li-hua ,
  • LIANG De-qing ,
  • GUAN Jin-an
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640;
    2. Key Laboratory of Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640

Received date: 2014-07-11

  Revised date: 2014-08-27

  Online published: 2014-10-30

摘要

天然气水合物导热系数的研究对于模拟自然界天然气水合物的成藏和天然气水合物勘探、开采具有重要意义。本文介绍了获取天然气水合物导热系数的实验测试和模拟计算方法,分析了气体水合物导热特性、导热机理以及水合物复合体系导热。总结了水合物导热规律,即外界温压条件和晶穴占有率对水合物的导热产生影响,且水合物的导热具有相似的温度压力依赖关系,并呈玻璃体的导热特性。水合物玻璃体导热特性由水合物笼型结构决定,而客体分子的存在强化了水合物导热的玻璃体属性。指出非稳态下天然气水合物导热性能变化研究对分析天然气水合物在常压下的稳定性、确定甲烷水合物等最佳储存温度、从导热角度探讨自保护效应机理等具有重要意义。

本文引用格式

万丽华 , 梁徳青 , 关进安 . 天然气水合物导热性能研究现状[J]. 新能源进展, 2014 , 2(5) : 385 -389 . DOI: 10.3969/j.issn.2095-560X.2014.05.010

Abstract

The study on gas hydrate thermal conductivity is significant for the gas hydrate reservoirs, exploration and mining. Experimental and measuring technique and modeling method for the gas hydrate thermal conductivity are presented. Thermal conduction features and mechanisms for gas hydrate, as well as thermal conductivity of complex system are reviewed. The thermal conductivity laws of gas hydrate are summarized. The outside thermobaric condition and cage occupancy effect on the gas hydrate heat performance. The thermal conduction of these gas hydrates, with gassy behavior, has similar temperature dependence. The gassy property of the thermal conduction is determined by framework of cage and reinforced by the guest molecules enclosed in the cages. It is figured out that studies on gas hydrates in unsteady-state with thermal properties that vary as a function of time are important. It is benefit to reveal gas hydrate stability under atmospheric conditions, to identify optimal storage temperature, and to discuss mechanism of self-preservation in the light of thermal conduction.

参考文献

[1] Sloan E D. Clathrate hydrates of natural gases[M]. New York: Marcel Dekker, 1998.

[2] Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426: 353-359.

[3] Koh C A. Towards a fundamental understanding of natural gas hydrates[J]. Chemical Society Reviews, 2002, 31(3): 157-167.

[4] 江怀友, 乔卫杰, 钟太贤, 等. 世界天然气水合物资源勘探开发现状与展望[J]. 中外能源, 2008, 3(6): 19-25.

[5] 邵仲妮. 天然气水合物资源分布及勘探开发进展[J]. 当代石油石化, 2007, 15(5): 24-26.

[6] Collett T S. Natural gas hydrates: resource of the twenty-first century[C]//Downey M W and Morgan W A, eds., Petroleum provinces of the twenty-first century: AAPG Memoir, 2001, 74: 85-108.

[7] Klauda J B, Sandler S I. Predictions of gas hydrate phase equilibria and amounts in natural sediment porous media[J]. Marine and Petroleum Geology, 2003, 20(5): 459-470.

[8] Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470.

[9] Tréhu A M, Ruppel C, Holland M, et al. Gas hydrates in marine sediments: lessons from scientific ocean drilling[J]. Oceanography, 2006, 19(4): 124-142.

[10] 樊栓狮, 关进安, 梁德青, 等. 天然气水合物动态成藏理论[J]. 天然气地球科学, 2007, 18(6): 819-826.

[11] 白玉湖, 李清平, 赵颖, 等. 水合物藏降压开采实验及数值模拟[J]. 工程热物理学报, 2010, 31(2): 295-298.

[12] 李淑霞, 郝永卯, 陈月明. 注热盐水分解实验研究[J]. 太原理工大学学报, 2010, 41(5): 680-684.

[13] Cook J G, Laubitz M J. The Thermal conductivity of two clathrate hydrates[C]//Proceedings of the 17th International Thermal Conductivity Conference, Gaithersburg, Maryland, 1981.

[14] Cook J G, Leaist D G. An exploratory study of the thermal conductivity of methane hydrate[J]. Geophysical Research Letters, 1983, 10(5): 397-399.

[15] Waite W F, Pinkston J, Kirby S H. Preliminary laboratory thermal conductivity measurements in pure methane hydrate and methane hydrate-sediment mixtures: a progress report[C]//Proceedings of the Fourth International Conference on Gas Hydrate, Yokohama, Japan, 2002.

[16] 石磊. 气体水合物导热性能研究[D]. 广州: 中国科学院广州能源研究所, 2002.

[17] Stoll R D, Bryan G M. Physical Properties of sediments containing gas hydrates[J]. Journal of the Geophysical Research, 1979, 84(10): 1629-1634.

[18] 黄犊子. 水合物及其在多孔介质中导热性能的研   究[D]. 合肥: 中国科技大学, 2005.

[19] 彭浩. 水合物及其纳米复合物的导热性能研究[D]. 广州: 中国科学院广州能源研究所, 2002.

[20] 岳英洁, 业渝光, 刁少波, 等. 沉积物中水合物热物理性质测试实验初探[J]. 海洋地质动态, 2007, 23(5): 35-39.

[21] Ross R G, Andersson P. Clathrate and other solid phases in the tetrahydrofuran-water system: thermal conductivity and heat capacity under pressure[J]. Can Journal of the Chemistry, 1982, 60(7): 881-892.

[22] 李栋梁. 天然气生成条件、声速和导热性质研究[D].广州: 中国科学院广州能源研究所, 2010.

[23] English N J. Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: application to methane hydrate[J]. Molecular Physics, 2008, 106(15): 1887-1898.

[24] Rosenbaum E J, English N J, Johnson J K, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation[J]. Journal of the Physical Chemistry B, 2007, 111(46): 13194-13250.

[25] 王璐琨, 陈光进, Pratt R M, 等. H型气体水合物导热系数的分子动力学模拟[J]. 化工学报, 2001, 52(4): 354-356.

[26] Wan L H, Liang D Q, Wu N Y, et al. Molecular dynamics simulations of the mechanisms of thermal conduction in methane hydrates[J]. Science China Chemistry, 2012, 55(1): 167-174.

[27] Jiang H, Myshakin E M, Jordan K D, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate[J]. Journal of the Physical Chemistry B, 2008, 112(33): 10207-10216.

[28] Huang D Z, Fan S S. Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution[J]. Journal of Chemical & Engineering Data, 2004, 49(5): 1479-1482.

[29] 万丽华, 梁德青, 关进安. 烃类水合物导热特性的分子动力学模拟[J]. 化工学报, 2014, 65(3): 792-796.

[30] 万丽华, 梁德青, 吴能友, 等. 客体分子数对甲烷水合物导热性能影响的分子动力学模拟[J]. 化工学报, 2012, 63(2): 382-386.

[31] Tse J S, Klein M L, McDonald I R. Dynamical properties of the structure I clathrate hydrate of Xenon[J]. Journal of the Chemical Physics, 1983, 78: 2096-2098.

[32] Tse J S, Klein M L, McDonald I R. Molecular dynamics of ice Ic and the structure I clathrate hydrate of methane[J]. Journal of the Physical Chemistry, 1983, 87(21): 4198-4203.

[33] Tse J S, Klein M L, McDonald I R. Computer simulation studies of the structure I clathrate hydrates of methane tetrafluoromethane, cyclopropane and ethylene oxide[J]. Journal Chemical Physics, 1984, 81(12): 6146-6153.

[34] Tse J S, McKinnon W R, Marchi M. Thermal expansion of structure I ethylene oxide hydrate[J]. Journal of the Physical Chemistry, 1987, 91(15): 4188-4193.

[35] Tse J S, Klein M L. Dynamical properties of the structure II hydrate of krypton[J]. Journal of the Physical Chemistry, 1987, 91(22): 5789-5791.

[36] Nolas G S, Beekman M, Gryko J, et al. Thermal conductivity of elemental crystalline silicon clathrate Si136[J]. Applied of Physics Letters, 2003, 82: 910-912.

[37] Zakrzewski M, White M A. Thermal conductivities of a clathrate with and without guest molecules[J]. Physical Review B, 1992, 45(6): 2809-2817.

[38] Huang D Z, Fan S S. Measuring and modeling thermal conductivity of gas hydrate-bearing sand[J]. Journal of Geophysical Research, 2005, 110(B1): B01311.

[39] Li D L, Du J W, He S, et al. Measurement and modeling of the effective thermal conductivity for porous methane hydrate samples[J]. Sci China Chem, 2011, 54(3): 373-379.

[40] 彭浩, 樊栓狮, 孙始财. 纳米碳管强化水合物导热的研究[J]. 制冷学报, 2006, 27(2): 39-43.

文章导航

/