压缩空气地下咸水含水层储能技术
收稿日期: 2014-04-10
修回日期: 2014-06-03
网络出版日期: 2014-10-30
基金资助
上海市科委资助项目(13dz1203103)
Air Energy Storage Using Saline Aquifer as Storage Reservior
Received date: 2014-04-10
Revised date: 2014-06-03
Online published: 2014-10-30
能源危机和温室效应促进了可再生能源的利用,储能技术是解决太阳能、风能波动问题的重要手段。压缩空气储能(Compressed Air Energy Storage, CAES)技术是仅次于抽水蓄能的第二大蓄能技术。目前CAES多是通过洞穴实现,其主要缺点是对地质要求较高,合适的洞穴数量有限,为扩大其应用,可使用地下咸水含水层作为储层。本文介绍了CAES电站的工作原理、优缺点及各国的发展现状,并分析了利用地下咸水含水层进行压缩空气储能的可行性、优点及一些问题与技术方法,如储层内残余烃的影响、氧化与腐蚀作用、颗粒的影响及缓冲气的选择,表明含水层CAES将是拓宽CAES应用的重要途径。
胡贤贤 , 张可霓 , 郭朝斌 . 压缩空气地下咸水含水层储能技术[J]. 新能源进展, 2014 , 2(5) : 390 -396 . DOI: 10.3969/j.issn.2095-560X.2014.05.011
Energy crisis and greenhouse effect have promoted the utilization of renewable energy. Energy storage technology is an indispensable part in solving the fluctuation problem for the utilization of solar energy, wind energy, etc. Compressed air energy storage (CAES) technology is the second large energy storage potential just after the pumped hydro storage technology. At present, reservoirs for the CAES are usually underground caverns which are highly limited by geological conditions. Using saline aquifer as the storage reservoir can extend the utilization of the CAES. Herein, the operation principle, advantages and disadvantages of CAES plant are introduced. The feasibility, problems and the key technologies used in aquifer CAES such as the residual hydrocarbons, oxidation, corrosion, particulates and the choice of cushion gas are discussed. This study concludes that the use of saline aquifer as storage reservoir will be an important way to extend the application of CAES.
Key words: compressed air; energy storage; porous media; saline aquifer
[1] 李建林. 大规模储能技术对风电规模化发展举足轻 重[J]. 变频器世界, 2010, (6): 65-67.
[2] 胡立业. 气体蓄能发电技术——压缩空气储能燃气轮机发电站[J]. 上海电力, 2006, 19(2): 158-160.
[3] Ibrahim H, Ilinca A, Perron J. Energy storage systems− characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-1250.
[4] Oldenburg C M, Pan L. Porous Media Compressed Air Energy Storage (PM-CAES): Theory and Simulation of the Coupled Wellbore–Reservoir System[J]. Transport in porous media, 2013, 97(2): 201-221.
[5] Succar S, Williams R H. Compressed air energy storage: Theory, resources, and applications for wind power[R]. Princeton environmental institute report, 2008, 8.
[6] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原 理[J]. 储能科学与技术, 2013, 2(02): 146-151.
[7] 宋卫东. 国外压缩空气蓄能发电概况[J]. 中国电力, 1997, 30(9): 53-54.
[8] 周波. 大型压气蓄能发电系统的开发[J]. 电器工业, 2004, (3): 43-45.
[9] 李仲奎, 马芳平, 刘辉. 压气蓄能电站的地下工程问题及应用前景[J]. 岩石力学与工程学报, 2003, (z1): 2121-2126.
[10] 余耀, 孙华, 许俊斌, 等. 压缩空气储能技术综述[J]. 装备机械, 2013, (001): 69-74.
[11] Denholm P, Kulcinski G L. Net energy balance and greenhouse gas emissions from renewable energy storage systems[R]. Energy Center of Wisconsin, Madison, WI 223-1, 2003, 6.
[12] Crotogino F, Mohmeyer K U, Scharf R. Huntorf CAES: More than 20 years of successful operation[C]//2001 Spring Meeting of International Biometric Society, Orlando, Florida, USA, 2001. 1-7.
[13] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(01): 26-40.
[14] Katz D L V, Lady E R. Compressed air storage for electric power generation[M]. Ulrich's Books, 1976.
[15] Ayers D L, McCafferty T W. Compressed Air Energy Storage Preliminary Design and Site Development Program in an Aquifer[R]. EPRI Report, Em-2351, 1982, 11.
[16] 张森琦, 郭建强, 刁玉杰, 等. 规模化深部咸水含水层CO2地质储存选址方法研究[J]. 中国地质, 2011, 38(06): 1640-1651.
[17] EPRI-DOE. Handbook of energy storage for transmission and distribution applications[M]. EPRI, 2003.
[18] EPRI-DOE, Palo Alto, CA, U.S. Department of Energy, Washington, DC. Energy Storage for Grid Connected Wind Generation Applications[R]. 2004.
[19] EPRI. Wind Power Integration: Energy Storage for Firming and Shaping[R]. EPRI, Palo Alto, CA 1008388, 2005.
[20] Gardner W P. Preliminary Formation Analysis for Compressed Air Energy Storage in Depleted Natural Gas Reservoirs[R]. 2013.
[21] Whims M J. Compressed-air energy storage: Pittsfield Aquifer Field Test. Test data: engineering analysis and evaluation[M]. Palo Alto, Calif.: Electric Power Research Institute, 1990.
[22] Chen E Y, Chen R B. Monitoring microbial corrosion in large oilfield water systems[J]. Journal of petroleum technology, 1984, 36(8): 1171-1176.
[23] Oldenburg C M, Pan L. Utilization of CO2 as cushion gas for porous media compressed air energy storage[J]. Greenhouse Gases: Science and Technology, 2013, 3(2): 124-135.
[24] Kushnir R, Ullmann A, Dayan A. Compressed air flow within aquifer reservoirs of CAES plants[J]. Transport in porous media, 2010, 81(2): 219-240.
/
〈 |
|
〉 |