欢迎访问《新能源进展》官方网站!今天是
论文

核壳结构材料的制备及其应用

  • 舒日洋 ,
  • 龙金星 ,
  • 张 琦 ,
  • 王铁军 ,
  • 马隆龙 ,
  • 袁正求 ,
  • 吴青云
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049;
    3. 中国科学技术大学,合肥 230027
舒日洋(1990-),男,博士研究生,主要从事生物质催化解聚方面的研究。

收稿日期: 2014-09-23

  修回日期: 2014-11-03

  网络出版日期: 2014-12-30

基金资助

国家自然科学基金(51306191,51476178);
国家科技支撑计划(2014BAD02B01)

The Preparation and Application of Core-Shell Structure Materials

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. University of Science and Technology of China; 230027

Received date: 2014-09-23

  Revised date: 2014-11-03

  Online published: 2014-12-30

摘要

核壳材料可以通过不同的包覆技术进行制备,其在许多方面的性能优于普通材料。包覆技术可以对内核微粒表面性质进行剪裁,如改变内核表面电荷、官能团和反应特性等,从而提高内核的分散性与稳定性。同时,核壳材料还具有组成种类多、形貌多样、组分间具有协同效应等特点,已被广泛用于生物质能利用催化剂、新型储能材料、光电材料等新能源领域。本文综述了多种核壳材料的制备方法,总结了核壳结构材料的发展现状,归纳了应用过程中存在的问题,并对核壳结构材料的进一步研究方向——向着微观操纵方向发展和达到性能可控的目的进行了展望。

本文引用格式

舒日洋 , 龙金星 , 张 琦 , 王铁军 , 马隆龙 , 袁正求 , 吴青云 . 核壳结构材料的制备及其应用[J]. 新能源进展, 2014 , 2(6) : 423 -429 . DOI: 10.3969/j.issn.2095-560X.2014.06.003

Abstract

Core-shell materials can be prepared by different coating technologies. Their performance is superior to the ordinary materials in many ways. The particle surface can be tailored to improve the dispersity and stability of the core through changing charges, varying functional groups and altering reactivity. At the same time, core-shell materials can combine various components and possess the characteristic of diverse morphology. Also, synergistic effect between different components can be existed. These features make them widely used as the excellent catalyst for biomass conversion, the novel high energy storage material and photoelectric materials in new energy area. In this paper, current technologies for the preparation and application of this kind of materials were summarized. The potential problems in the applications of core-shell structure materials were also reviewed. Furthermore, based on the knowledge of current technologies, pertinent suggestions for the future preparation and application of these novel and efficient materials were proposed as well.

参考文献

[1] Stober W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in Micron Size Range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.

[2] Ohmori M, Matijevic E. Preparation and Properties of Uniform Coated Inorganic Colloidal Particles[J]. Journal of Colloid and Interface Science, 1993, 160(2): 288-292.

[3] Cao J, Wang B J, Han D L, et al. Effects of ZnO and SiO2 shell thickness on the structure and optical properties of ZnS:Mn2+ nanowires/ZnO quantum dots/SiO2 core/shell nanocomposites[J]. Materials Letters, 2014, 135: 71-74.

[4] Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22.

[5] 石变芳. 新型多功能核壳结构复合材料的设计与制  备[D]. 上海: 华东理工大学, 2011.

[6] Xuan S H, Wang Y X J, Leung K C F, et al. Synthesis of Fe3O4@Polyaniline Core/Shell Microspheres with Well-Defined Blackberry-Like Morphology[J]. Journal of Physical Chemistry C, 2008, 112(48): 18804-18809.

[7] Fleming M S, Mandal T K, Walt D R. Nanosphere- microsphere assembly: Methods for core-shell materials preparation[J]. Chemistry of Materials, 2001, 13(6): 2210-2216.

[8] Soule S, Allouche J, Dupin J C, et al. Design of Ag-Au nanoshell core/mesoporous oriented silica shell nanoparticles through a sol-gel surfactant templating method[J]. Microporous and Mesoporous Materials, 2013, 171: 72-77.

[9] Zhou J F, Ao J, Xia Y Y, et al. Stable photoluminescent ZnO@Cd(OH)2 core-shell nanoparticles synthesized via ultrasonication-assisted sol-gel method[J]. Journal of Colloid and Interface Science, 2013, 393: 80-86.

[10] 杨忠强, 刘凤岐. 无机有机−核壳材料研究进展[J]. 化学通报, 2004, 3: 163-169+177.

[11] Ray J G, Johnson A J, Savin D A. Self-Assembly and Responsiveness of Polypeptide-Based Block Copolymers: How “Smart” Behavior and Topological Complexity Yield Unique Assembly in Aqueous Media[J]. Journal of Polymer Science Part B-Polymer Physics, 2013, 51(7): 508-523.

[12] Ashayer R, Green M, Mannan S H. Synthesis of palladium nanoshell using a layer-by-layer technique[J]. Journal of Nanoparticle Research, 2010, 12 (4): 1489-1494.

[13] 孙志娟, 陈雪莲, 蒋春跃. 自组装法制备中空二氧化硅纳米粒子减反射薄膜[J]. 无机材料学报, 2014, 29(9): 947-955.

[14] Sieben J M, Comignani V, Alvarez A E, et al. Synthesis and characterization of Cu core Pt-Ru shell nanoparticles for the electro-oxidation of alcohols[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8667-8674.

[15] Alayoglu S, Nilekar A U, Mavrikakis M, et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nature materials, 2008, 7(4): 333-338.

[16] Qu H, Lai, Y M, Niu D Z, et al. Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies[J]. Analytica Chimica Acta, 2013, 763: 38-42.

[17] 蔺玉胜, 宋彩霞, 魏文阁, 等. 空心球壳材料的制备研究进展[J]. 材料导报, 2004, 9: 24-26.

[18] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science, 1998, 282(5391): 1111-1114.

[19] Huang J H, Ma R, Ebina Y, et al. Layer-by-Layer Assembly of TaO3 Nanosheet/Polycation Composite Nanostructures: Multilayer Film, Hollow Sphere, and Its Photocatalytic Activity for Hydrogen Evolution[J]. Chemistry of Materials, 2010, 22(8): 2582-2587.

[20] Dai C F, Weng C J, Chien C M, et al. Using silane coupling agents to prepare raspberry-shaped polyaniline hollow microspheres with tunable nanoshell thickness[J]. Journal of Colloid and Interface Science, 2013, 394: 36-43.

[21] Zhou X J, cheng X, Feng X, et al. Synthesis of hollow mesoporous silica nanoparticles with tunable shell thickness and pore size using amphiphilic block copolymers as core templates[J]. Dalton Transactions, 2014, 43(31): 11834-11842.

[22] Buchold D H M, Feldmann C. Nanoscale γ-AlO(OH) hollow spheres: Synthesis and container-type functionality[J]. Nano Letters, 2007, 7(11): 3489-3492.

[23] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres[J]. Angewandte Chemie-International Edition, 2003, 42(26): 3027-3030.

[24] Heidarpour A, Karimzadeh E, Enayati M H. In situ synthesis mechanism of Al2O3-Mo nanocomposite by ball milling process[J]. Journal of Alloys and Compounds, 2009, 477(1/2): 692-695.

[25] Schreiber R, Vogt C, Werther J, et al. Fluidized bed coating at supercritical fluid conditions[J]. Journal of Supercritical Fluids, 2002, 24(2): 137-151.

[26] Teyssandier F, Wang Y B. Gas phase reactivity in chemical vapor deposition[J]. Surface & Coatings Technology, 1995, 76(1/3): 303-310.

[27] Qiao Z P, Xie Y, Li G, et al. Single-step synthesis of nanocrystalline CdS/polyacrylamide composites by gamma-irradiation[J]. Journal of Materials Science, 2000, 35(2): 285-287.

[28] Qian N, Zhang L, Ma W, et al. Core–Shell Al2O3- Supported Ni for High-Performance Catalytic Reforming of Toluene as a Model Compound of Tar[J]. Arabian Journal for Science and Engineering, 2014, 39(9): 6671-6678.

[29] Zhang C, Wang H, Liu F, et al. Magnetic core–shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose[J]. Cellulose, 2012, 20(1): 127-134.

[30] Yan Q, Wan C, Liu J, et al. Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons[J]. Green Chemistry, 2013, 15(6): 1631-1640.

[31] Hahn M W, Copeland J R, Van Pelt A H, et al. Stability of amorphous silica-alumina in hot liquid water[J]. ChemSusChem, 2013, 6(12): 2304-2315.

[32] Xiong Y, Zhang Z, Wang X, et al. Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically- recoverable solid acid catalyst[J]. Chemical Engineering Journal, 2014, 235: 349-355.

[33] Wang D Y, Rogach A L, Caruso F. Composite photonic crystals from semiconductor nanocrystal/polyelectrolyte- coated colloidal spheres[J]. Chemistry of Materials, 2003, 15(14): 2724-2729.

[34] Wang Q F, Xu J, Wang X F, et al. Core-Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High-Performance Materials for Flexible, All-Solid-State, Electrochemical Capacitors[J]. Chemelectrochem, 2014, 1(3): 559-564.

[35] Yang C, Liu P. Core-shell attapulgite@polypyrrole composite with well-defined corn cob-like morphology via self-assembling and in situ oxidative polymerization[J]. Synthetic Metals, 2009, 159(19/20): 2056-2062.

[36] Guo K Y, Chen X H, Han J H, et al. Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance[J]. Journal of Sol-Gel Science and Technology, 2014, 72(1): 92-95.

[37] Lai W D, Li X W, Feng H G, et al. Photo-polymerization Property of the Photosensitive Core-shell Structured Microcapsule Material[J]. Journal of Photopolymer Science and Technology, 2008, 21(6): 761-765.

[38] Ow H, Larson D R, Srivastava M, et al. Bright and stable core-shell fluorescent silica nanoparticles[J]. Nano Letters, 2005, 5(1): 113-117.

文章导航

/