欢迎访问《新能源进展》官方网站!今天是
论文

中温地热能驱动的跨临界有机朗肯-蒸气压缩制冷系统的火用分析

  • 曹园树 ,
  • 孙雪萌 ,
  • 马志同 ,
  • 马伟斌
展开
  • 1. 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广州 510640;
    2. 中国科学院大学,北京 100049;
    3. 深圳市计量质量检测研究院,广东 深圳 518055
曹园树(1989-),男,硕士研究生,主要从事中低温热能利用技术研究。

收稿日期: 2014-09-22

  修回日期: 2014-10-19

  网络出版日期: 2014-12-30

基金资助

国家高新技术研究发展计划(863)项目(2012AA053003);
国家自然科学基金项目(51106161);
广东省中国科学院全面战略合作项目(2012B091100263)

Exergy Analysis of Transcritical Organic Rankine-Vapor Compression Refrigiration System Powered by Medium-grade Geothermal Energy

  • CAO Yuan-shu ,
  • SUN Xue-meng ,
  • MA Zhi-tong ,
  • MA Wei-bin
Expand
  • 1. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Shenzhen Academy of Metering Quality Inspection, Guangdong Shenzhen 518055, China

Received date: 2014-09-22

  Revised date: 2014-10-19

  Online published: 2014-12-30

摘要

建立中温地热能驱动跨临界有机朗肯−蒸气压缩制冷系统的火用分析热力学模型,采用R143a作为系统循环工质,探讨膨胀机入口压力、地热流体进口温度、冷凝温度、蒸发温度对火用效率的影响规律,分析系统各个部件的火用损失。计算结果表明:合理的膨胀机入口压力应该小于1.8倍临界压力;存在最佳的地热流体进口温度使得系统的火用效率最大;降低冷凝温度和提高蒸发温度都可以提高?效率,但需要增加换热器等效换热面积作为代价;冷凝器、发生器、膨胀机、节流阀、压缩机、蒸发器、工质泵的火用损失依次降低;随着地热流体进口温度升高,冷凝器及发生器的火用损失所占的比例增大,其它部件的火用损失对应的比例则降低。本文可以为跨临界有机朗肯−蒸气压缩制冷系统的设计提供依据。

本文引用格式

曹园树 , 孙雪萌 , 马志同 , 马伟斌 . 中温地热能驱动的跨临界有机朗肯-蒸气压缩制冷系统的火用分析[J]. 新能源进展, 2014 , 2(6) : 441 -448 . DOI: 10.3969/j.issn.2095-560X.2014.06.006

Abstract

A thermodynamic exergy analysis model of the transcritical Organic Rankine-Vapor Compression refrigeration system powered by medium-grade geothermal energy is set up. R143a is selected as working fluid. The influence rules of expander inlet pressure, geothermal fluid inlet temperature, condensing temperature and evaporating temperature on the exergy efficiency are studied. What’s more, each component exergy loss of the system is analyzed. The calculation results showed that reasonable expander inlet pressure should be less than 1.8 times the critical pressure. There exists an optimal geothermal fluid inlet temperature for exergy efficiency. A lower condensing temperature and higher evaporating temperature could improve exergy efficiency, which need more equivalent heat transfer area. The absolute exergy loss of condenser, generator, expander and throttle valve, compressor, evaporator decrease in turn. As the geothermal fluid inlet temperature increases, exergy loss ratio of condenser and generator increases, while that of the other parts decrease. This work could provide references for the design of transcritical Organic Rankine-Vapor Compression refrigeration system.

参考文献

[1] 韩再生, 郑克棪, 宾德智. 我国地热资源中长期战略研讨(2020, 2030, 2050)[J]. 地热能, 2009, (1): 10-18.

[2] 汪集旸, 龚宇烈, 马伟斌, 等. 我国发展地热能面临问题的分析及建议[J]. 地热能, 2011, (1): 14-17.

[3] 郑克棪, 潘小平. 中国地热发电开发现状与前景[J]. 中外能源, 2009, 14(2): 45-48.

[4] 朱俊生. 中国新能源和可再生能源发展状况[J]. 可再生能源, 2003, (2): 3-8.

[5] Aphornratana S, Sriveerakul T. Analysis of a combined Rankine–vapour–compression refrigeration cycle[J]. Energy Conversion and Management, 2010, 51(12): 2557-2564.

[6] Wang H, Peterson R, Herron T. Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle)[J]. Energy, 2011, 36(8): 4809-4820.

[7] Wang H, Peterson R, Harada K, et al. Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling[J]. Energy, 2011, 36(1): 447-458.

[8] Demierre J, Henchoz S, Favrat D. Prototype of a thermally driven heat pump based on integrated organic Rankine cycles (ORC)[J]. Energy, 2012, 41(1): 10-17.

[9] Aneke M, Agnew B, Underwood C, et al. Thermodynamic analysis of alternative refrigeration cycles driven from waste heat in a food processing application[J]. International Journal of Refrigeration, 2012, 35(5): 1349-1358.

[10] Bu X B, Li H S, Wang L B. Performance analysis and working fluids selection of solar powered organic Rankine-vapor compression ice maker[J]. Solar Energy, 2013, 95: 271-278.

[11] Li H, Bu X, Wang L, et al. Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy[J]. Energy and Buildings, 2013, 65: 167-172.

[12] 胡冰, 马伟斌. 基于有机朗肯循环的低温地热制冷系统热力学分析[J]. 新能源进展, 2014, 2(2): 122-128.

[13] Mupparapu S P, Khatri K K. Modelling and Simulation of Solar-Biomass Hybrid Trigeneration using ORC-VCC[J]. IJMCA, 2014, 2(4): 111-117.

[14] 高虹, 刘朝, 贺超, 等. 跨临界有机朗肯循环性能分 析[J]. 重庆大学学报(自然科学版), 2012, 35(12): 57-61.

[15] 曹园树, 胡冰, 梁立鹏, 等. 中温地热能驱动的跨临界有机朗肯−蒸气压缩制冷系统的性能分析[J]. 新能源进展, 2014, 2(3): 204-210.

[16] Bejan A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture[J]. International Journal of Energy Research, 2002, 26(7): 0-43.

[17] Liu Q, Duan Y Y, Yang Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids[J]. Energy, 2013, 63: 123-132.

[18] Guo T, Wang H X, Zhang S J. Comparative analysis of natural and conventional working fluids for use in transcriticalRankine cycle using low-temperature geothermal source[J]. International Journal of Energy Research, 2011, 35(6): 530-544.

文章导航

/