欢迎访问《新能源进展》官方网站!今天是
论文

大功率锂离子动力电池组散热特性数值模拟

  • 赵佳腾 ,
  • 饶中浩 ,
  • 刘新健 ,
  • 刘臣臻 ,
  • 霍宇涛 ,
  • 王庆超
展开
  • 中国矿业大学电力工程学院,江苏 徐州 221116
赵佳腾(1990-),男,硕士研究生,主要从事新能源汽车动力电池热管理研究。

收稿日期: 2014-09-18

  修回日期: 2014-10-08

  网络出版日期: 2014-12-30

基金资助

中国矿业大学2014年创新创业基金项目大学生创新项目(201432);
电动车辆国家工程实验室开放基金(NELEV2014)

Numerical Simulation Investigation on the Heat Dissipation Performance of High Power Li-on Battery Pack

  • ZHAO Jia-teng ,
  • RAO Zhong-hao ,
  • LIU Xin-jian ,
  • LIU Chen-zhen ,
  • HUO Yu-tao ,
  • WANG Qing-chao
Expand
  • School of Electric Power Engineering, China University of Mining and Technology, Jiangsu Xuzhou 221116, China

Received date: 2014-09-18

  Revised date: 2014-10-08

  Online published: 2014-12-30

摘要

大功率锂离子动力电池具有较高的功率密度和能量密度,在纯电动汽车和混合动力汽车中具有很大的应用价值。本文采用数值模拟的方法,建立了大功率非均匀产热动力电池组三维模型,模拟分析了基于空气单向流动冷却和往复流动冷却的LiFePO4动力电池组(4 × 6)的散热性能。结果表明,对于大功率电池正负极产热不均匀的情况,为了降低电池模块的局部温差,电池采用正负极交叉式排列组合是必要的;随着入口风速的增大,角度大小对散热性能的影响增大;周期较长时的往复通风方式不利于减小电池组局部温差,甚至在长时间内会增加局部温差。

本文引用格式

赵佳腾 , 饶中浩 , 刘新健 , 刘臣臻 , 霍宇涛 , 王庆超 . 大功率锂离子动力电池组散热特性数值模拟[J]. 新能源进展, 2014 , 2(6) : 471 -475 . DOI: 10.3969/j.issn.2095-560X.2014.06.010

Abstract

Lithium ion battery has broad application prospect in EVs (Electric Vehicles) and HEVs (Hybrid Electric Vehicles) because of its high energy density and power density. The heat dissipation performance of high power LiFePO4 battery pack (4 × 6) based on unidirectional/reciprocating air flowing was investigated through 3D numerical simulation methods. The results showed that when the heat generation between the anode and the cathode was inhomogeneous, it was necessary to arrange anodes and cathodes crosswise in order to reduce local temperature difference of the battery pack. With the increase of entrance air speed, the effect of angle size on the heat dissipation performance of battery pack enlarged. When the period was long, reciprocating ventilation was not conducive to reducing the local temperature difference of the battery pack, even increased the local temperature difference to the contrary for a long time.

参考文献

[1] 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013.

[2] 饶中浩, 汪双凤, 洪思慧, 等. 电动汽车动力电池热管理实验与数值分析[J]. 工程热物理学报, 2013, 34(6): 1-4.

[3] Rao Z H, Wang S F. A review of power battery thermal energy management[J]. Renewable& Sustainable Energy Reviews, 2011, 15(9): 4554-4571.

[4] Rao Z H, Wang S F, Zhang G Q. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion Management, 2011, 52: 3408-3414.

[5] Xu X M, He R. Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 301-315.

[6] Karimi G, Li X. Thermal management of lithium-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2013, 37: 13-24.

[7] Yang K, An J J, Chen S. Temperature characterization analysis of LiFePO4/C power battery during charging and discharging[J]. Journal of Thermal Analysis and Calorimetry, 2009, 99: 515-21.

[8] Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196: 5685-5696.

[9] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 239: 30-36.

[10] Giuliano M R, Prasad A K, Advani S G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216: 345-352.

[11] 赵佳腾, 饶中浩, 刘新健, 等. 基于空气冷却的动力电池组散热特性研究[C]//高等学校工程热物理第二十届全国学术会议, 青岛, 2014.

文章导航

/