欢迎访问《新能源进展》官方网站!今天是
论文

羧甲基壳聚糖水性粘结剂改性及其在磷酸铁锂正极的应用研究

  • 李 勇 ,
  • 仲皓想 ,
  • 赵欣悦 ,
  • 邵 丹 ,
  • 张灵志
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049
李 勇(1988-),男,硕士研究生,主要从事锂离子电池正极水系粘结剂的研究。

收稿日期: 2015-03-17

  修回日期: 2015-03-31

  网络出版日期: 2015-06-30

基金资助

广东省中国科学院全面战略合作专项(2013B091300017);
广州市科技计划项目(2014Y2-00219);
浙江省舟山市科技计划项目(2014C11021);
浙江舟山群岛新区科技创业领军团队(201301);
广东省特支计划科技创新领军人才项目(2014TX01N014)

Modification of Carboxymethyl Chitosan as Water Soluble Binder for Lithium Iron Phosphate Cathode in Lithium-ion Batteries

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-03-17

  Revised date: 2015-03-31

  Online published: 2015-06-30

摘要

羧甲基壳聚糖(C-CTS)作为磷酸铁锂(LiFePO4, LFP)正极水系粘结剂的两种改性方式分别是:(1)与聚环氧乙烷(PEG)共混制备C-CTS/PEG复合粘结剂;(2)在C-CTS/PEG混合体系中,以三羟甲基丙烷-三[3-(2-甲基吖丙啶基)丙酸酯](XR-104)作为交联剂制备可交联的C-CTS/PEG/XR-104水系粘结剂。本文考察了不同C-CTS/PEG质量比复合粘结剂对LFP正极的电化学性能的影响,C-CTS/PEG的优化重量比为3∶1,此时LFP正极表现出最佳的循环稳定性。电池在0.5 C下充放电测试,140次循环后容量保持率为99%。采用差示扫描量热法(DSC)、傅里叶红外光谱仪(FTIR)和溶解实验等研究C-CTS/PEG与XR-104的交联反应,当交联剂XR-104的重量为C-CTS的1%时,LFP正极表现出最佳的电化学性能。

本文引用格式

李 勇 , 仲皓想 , 赵欣悦 , 邵 丹 , 张灵志 . 羧甲基壳聚糖水性粘结剂改性及其在磷酸铁锂正极的应用研究[J]. 新能源进展, 2015 , 3(3) : 226 -230 . DOI: 10.3969/j.issn.2095-560X.2015.03.011

Abstract

Carboxymethyl chitosan (C-CTS) was modified in two different methods as water soluble binder for LiFePO4 (LFP) cathode: (1) blending C-CTS with polyethylene oxide (PEG) to prepare the composite binder (C-CTS/PEG), (2) using trimethylolpropane tris(2-methyl-1-aziridinepropionate) (XR-104) as a crosslinker in C-CTS/PEG blending system to prepare crosslinkable water soluble binder (C-CTS/PEG/XR-104). The electrochemical performances of LFP cathode with C-CTS/PEG composite binders of different weight ratios were investigated. LFP cathode exhibited the best cycle stability when using an optimized weight ratio of 3:1 for C-CTS/PEG binder, showing a capacity retention of 99% after 140 cycles at 0.5 C. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dissolution experiments were employed to study the cross-linking reaction between C-CTS/PEG and XR-104. It was found that LFP cathode with optimal amount of 1% XR-104 crosslinker showed the best rate capability.

参考文献

[1] Pejovnik S, Dominko R, Bele M, et al. Electrochemical binding and wiring in battery materials[J]. Journal of Power Sources , 2008, 184(2): 593-597.

[2] Zhang S S, Jow T R. Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries[J]. Journal of Power sources, 2002, 109(2): 422-426.

[3] Zhang Z, Zeng T, Lai Y, et al. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries[J]. Journal of Power Sources, 2014, 247(1): 1-8.

[4] Lee J T, Chu Y J, Peng X W, et al. A novel and efficient water-based composite binder for LiCoO2 cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2007, 173(2): 985-993.

[5] Cai Z P, Liang Y, Li W S, et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Journal of Power Sources, 2009, 189(1): 547-551.

[6] Ryou M H, Kim J, Lee I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced materials, 2013, 25(11): 1571-1576.

[7] Loeffler N, Zamory V J, Laszczynski N, et al . Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder[J]. Journal of Power Sources, 2014, 248(15): 915-936.

[8] Buqa H, Holzapfel M, Krumeich F, et al. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(1): 617-638.

[9] Chai L L, Qu Q T, Zhang L F, et al. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries[J]. Electrochimica Acta, 2013, 105: 378-83.

[10] Yue L, Zhang L Z, Zhong H X. Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries[J]. Journal of Power Sources, 2014, 247(1): 327-357.

[11] Zhong H X, Zhou P, Yue L, et al. Micro/nano-structured SnS2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries[J]. Journal of Applied Electrochemistry, 2013, 44(1): 45-51.

[12] Sun M H, Zhong H X, Jiao S R, et al. Investigation on Carboxymethyl Chitosan as New Water Soluble Binder for LiFePO4 Cathode in Li-Ion Batteries[J]. Electrochimica Acta, 2014, 127(1): 239-244.

[13] Chen Z, Christensen L, Dahn J R. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers[J]. Electrochemistry Communications, 2003, 5(11): 919-941.

[14] Koo B, Kim H, Cho Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie, 2012, 51(35): 8762-8767.

[15] Xue Z, Zhang Z, Amine K. Cross-linkable urethane acrylate oligomers as binders for lithium-ion battery[J]. Electrochemistry Communications, 2013, 34(4): 86-89.

[16] 郑永丽, 贾锂, 刘宗惠. 水性丙烯酸树脂常用交联剂的研究进展[J]. 中国皮革, 2003, 32(11): 13-17.

[17] 丁明惠, 盖登宇, 王高升. 聚乙二醇改性壳聚糖薄膜结构与性质的研究[J]. 化学工程师, 2007, 19(8): 16-18.

 
文章导航

/