欢迎访问《新能源进展》官方网站!今天是
论文

LiFePO4正极水性粘结剂的研究进展

  • 何嘉荣 ,
  • 仲皓想 ,
  • 邵 丹 ,
  • 李 勇 ,
  • 张灵志
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049
何嘉荣(1990-),男,硕士研究生,主要从事水性粘结剂在电化学储能器件(锂离子电池、超级电容器等)中的应用研究。

收稿日期: 2015-03-25

  修回日期: 2015-04-13

基金资助

广东省中国科学院全面战略合作专项(2013B091300017);
广州市科技计划项目(2014Y2-00219);
浙江舟山群岛新区科技创业领军团队(201301);
浙江省舟山市科技计划项目(2014C11021);
广东省特支计划科技创新领军人才项目(2014TX01N014)

Research Progress of Water Soluble Binders for Lithium Iron Phosphate Cathode in Lithium-Ion Batteries

  • HE Jia-rong ,
  • ZHONG Hao-xiang ,
  • SHAO Dan ,
  • LI Yong ,
  • ZHANG Ling-zhi
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
     2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-03-25

  Revised date: 2015-04-13

摘要

磷酸铁锂(LiFePO4)具有安全性好、价格低廉以及环境友好等优点,是当前锂离子动力电池的主流正极材料。粘结剂是锂离子电池电极的重要非活性成分,其性能直接影响电池的电化学性能。本文综述了近年来不同水性粘结剂在LiFePO4正极材料中的研究进展,指出了现阶段存在的问题,并对水性粘结剂的应用前景进行了展望。

本文引用格式

何嘉荣 , 仲皓想 , 邵 丹 , 李 勇 , 张灵志 . LiFePO4正极水性粘结剂的研究进展[J]. 新能源进展, 2015 , 3(3) : 231 -238 . DOI: 10.3969/j.issn.2095-560X.2015.03.012

Abstract

Lithium ion phosphate (LiFePO4) has been investigated as the mainstream cathode in lithium-ion power batteries because of its high safety, low cost and environment friendly. As an inactive but crucial component of the electrode, the binder has great impact on the electrochemical performances of lithium-ion batteries. In this paper, research progress of water soluble binders used in LiFePO4 cathode for lithium-ion batteries is reviewed, and the existing issues and potential challenges of present research are pointed out. Finally, the future development of water soluble binders is also prospected.

参考文献

[1] Okada S, Yamamoto T, Okazaki Y, et al. Cathode properties of amorphous and crystalline FePO4[J]. Journal of Power Sources, 2005, 146(1/2): 570-574.

[2] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for Lithium Battery Cathodes[J]. Journal of The Electrochemical Society, 2001, 148(3): A224.

[3] Yamada A, Hosoya M, Chung S C, et al. Olivine-type cathodes Achievements and problems[J]. Journal of Power Sources, 2003, 119-121: 232-238.

[4] 饶睦敏, 汪佐龙, 陈柯宇, 等. 磷酸铁锂电池及其新能源汽车启动电源性能研究[J]. 新能源进展, 2015, 3(1): 70-74.

[5] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128.

[6] Tang X C, Li L X, Lai Q L, et al. Investigation on diffusion behavior of Li+ in LiFePO4 by capacity intermittent titration technique (CITT)[J]. Electrochimica Acta, 2009, 54(8): 2329-2334.

[7] Trócoli R, Franger S, Cruz M, et al. Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping[J]. Electrochimica Acta, 2014, 135: 558-567.

[8] Zhang C H, Liang Y Z, Yao L, et al. Synthesis and characterization of LiFePO4-carbon nanofiber with Ti4+ substitution by electrospinning and thermal treatment[J]. Solid State Ionics, 2014, 267: 74-79.

[9] Sun P P, Zhang H Y, Shen K, et al. Preparation of V-Doped LiFePO4/C as the Optimized Cathode Material for Lithium Ion Batteries[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 2667-2672.

[10] Gao Y, Li L, Peng H, et al. Surfactant-Assisted Sol-Gel Synthesis of Nanostructured Ruthenium-Doped Lithium Iron Phosphate as a Cathode for Lithium-Ion Batteries[J]. ChemElectroChem, 2014, 1(12): 2146-2152.

[11] Chi Z X, Zhang W, Wang X S, et al. Optimizing LiFePO4@C core-shell structures via the 3-aminophenol-formaldehyde polymerization for improved battery performance[J]. ACS Applied Materials Interfaces, 2014, 6(24): 22719-22725.

[12] Doeff M M, Wilcox J D, Kostecki R, et al. Optimization of carbon coatings on LiFePO4[J]. Journal of Power Sources, 2006, 163(1): 180-184.

[13] Li X L, Jin H C, Liu S, et al. Carambola-shaped LiFePO4/C nanocomposites: directing synthesis and enhanced Li storage properties[J]. Journal of Materials Chemistry A, 2015, 3(1): 116-120.

[14] Zhi X K, Liang G C, Wang L, et al. Optimization of carbon coatings on LiFePO4: Carbonization temperature and carbon content[J]. Journal of Alloys and Compounds, 2010, 503(2): 370-374.

[15] Liu Y Y, Gu J J, Zhang J L, et al. LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80[J]. RSC Advances, 2015, 5(13): 9745-9751.

[16] Wang L, Sun W T, Tang X Y, et al. Nano particle LiFePO4 prepared by solvothermal process[J]. Journal of Power Sources, 2013, 244: 94-100.

[17] Wang X Y, Miao C, Zhou J, et al. A novel synthesis of spherical LiFePO4 nanoparticles[J]. Materials Letters, 2011, 65(14): 2096-2099.

[18] Zhang S S, Xu K, Jow T R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries[J]. Journal of Power Sources, 2004, 138(1/2): 226-231.

[19] Guerfi A, Kaneko M, Petitclerc M, et al. LiFePO4 water-soluble binder electrode for Li-ion batteries[J]. Journal of Power Sources, 2007, 163(2): 1047-1052.

[20] Zhang S S, Jow T R. Study of poly (acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries[J]. Journal of Power Sources, 2002, 109(2): 422-426.

[21] Buqa H, Holzapfel M, Krumeich F, et al. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(1): 617-622.

[22] Li C C, Wang Y W. Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes[J]. Journal of Power Sources, 2013, 227: 204-210.

[23] Park Y S, Oh E S, Lee S M. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 248: 1191-1196.

[24] Yabuuchi N, Kinoshita Y, Misaki K, et al. Electrochemical Properties of LiCoO2 Electrodes with Latex Binders on High-Voltage Exposure[J]. Journal of the Electrochemical Society, 2015, 162(4): A538-A544.

[25] Yan X, Zhang Y, Zhu K, et al. Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder[J]. Journal of Power Sources, 2014, 246: 95-102.

[26] Lux S F, Schappacher F, Balducci A, et al. Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries[J]. Journal of The Electrochemical Society, 2010, 157(3): A320.

[27] Qiu L, Shao Z, Wang D, et al. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries[J]. Carbohydrate Polymers, 2014, 112: 532-538.

[28] Zhang Z, Zeng T, Lu H, et al. Enhanced High-Temperature Performances of LiFePO4 Cathode with Polyacrylic Acid as Binder[J]. ECS Electrochemistry Letters, 2012, 1(5): A74-A76.

[29] Cai Z P, Liang Y, Li W S, et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Journal of Power Sources, 2009, 189(1): 547-551.

[30] Chong J, Xun S D, Zheng H H, et al. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of Power Sources, 2011, 196(18): 7707-7714.

[31] Lee J H, Kim J S, Kim Y C, et al. Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries[J]. Ultramicroscopy, 2008, 108(10): 1256-1259.

[32] Sun M H, Zhong H X, Jiao S R, et al. Investigation on Carboxymethyl Chitosan as New Water Soluble Binder for LiFePO4 Cathode in Li-Ion Batteries[J]. Electrochimica Acta, 2014, 127: 239-244.

[33] Nguyen V H, Wang W L, Jin E M, et al. Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode[J]. Applied Surface Science, 2013, 282: 444-449.

[34] Prosini P P, Carewska M, Cento C, et al. Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 150: 129-135.

[35] 刘云建, 李新海, 郭华军, 等. 粘结剂对C-LiFePO4/石墨电池电化学性能的影响[J]. 中南大学学报(自然科学版), 2009, 40(1): 31-35.

[36] Biensan P, Simon B, Peres J P, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81: 906-912.

[37] Porcher W, Moreau P, Lestriez B, et al. Is LiFePO4 Stable in Water?[J]. Electrochemical and Solid-State Letters, 2008, 11(1): A4.

[38] Porcher W, Moreau P, Lestriez B, et al. Stability of LiFePO4 in water and consequence on the Li battery behaviour[J]. Ionics, 2008, 14(6): 583-587.

[39] Li J, Armstrong B L, Daniel C, et al. Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes[J]. Journal of Colloid and Interface Science, 2013, 405: 118-124.

[40] Li J, Armstrong B L, Kiggans J, et al. Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing[J]. Langmuir, 2012, 28(8): 3783-3790.

[41] Li C C, Peng X W, Lee J T, et al. Using Poly(4-Styrene Sulfonic Acid) to Improve the Dispersion Homogeneity of Aqueous-Processed LiFePO4 Cathodes[J]. Journal of The Electrochemical Society, 2010, 157(4): A517.

[42] Li C C, Wang Y H, Yang T Y. Effects of Surface-coated Carbon on the Chemical Selectivity for Water-Soluble Dispersants of LiFePO4[J]. Journal of The Electrochemical Society, 2011, 158(7): A828.

[43] Porcher W, Lestriez B, Jouanneau S, et al. Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes[J]. Journal of Power Sources, 2010, 195(9): 2835-2843.

[44] Arora P. Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries[J]. Journal of The Electrochemical Society, 1998, 145(10): 3647-3667.

[45] Lin X, Park J, Liu L, et al. A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries[J]. Journal of the Electrochemical Society, 2013, 160(10): A1701-A1710.

文章导航

/