欢迎访问《新能源进展》官方网站!今天是
论文

TiO2纳米管限域Fe2O3的可见光分解水制氢性能

  • 王文博 ,
  • 吴梁鹏 ,
  • 李新军
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049
王文博(1991-),男,硕士研究生,主要从事纳米催化材料的研究。

收稿日期: 2015-05-12

  修回日期: 2015-05-15

  网络出版日期: 2015-06-30

基金资助

广州市科技计划项目(2013J4300035);
广东省科技计划项目(2013B050800002);
广东省水与大气污染防治重点实验室基金项目(2011A060901002)

Fe2O3 Confined within Titanium Nanotubes for Photocatalytic Hydrogen Production under Visible Light Illumination

  • WANG Wen-bo ,
  • WU Liang-peng ,
  • LI Xin-jun
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-05-12

  Revised date: 2015-05-15

  Online published: 2015-06-30

摘要

通过真空−超声辅助的等体积浸渍法制备了TiO2纳米管限域Fe2O3催化剂,考察了其可见光分解水制氢性能。由于TiO2纳米管的限域效应,导致Fe2O3颗粒减小,分散度提高,能隙增大,光生载流子得到有效分离,提高了其光解水制氢活性。

本文引用格式

王文博 , 吴梁鹏 , 李新军 . TiO2纳米管限域Fe2O3的可见光分解水制氢性能[J]. 新能源进展, 2015 , 3(3) : 239 -244 . DOI: 10.3969/j.issn.2095-560X.2015.03.013

Abstract

A novel confinement catalyst, Fe2O3 encapsulated in TiO2 nanotubes (TNTs), was prepared by vacuum-assisted impregnation. Its photocatalytic activity towards hydrogen production under visible light illumination was evaluated. Fe2O3 confined within TNT has the high dispersion, the smaller particle with larger bandgap compared with the catalyst loaded on the outside surface. And it exhibits enhanced photocatalytic activity for hydrogen evolution. It is attributed to the due to the effective separation of the photogenerated carriers as a result of the spatial confinement effect of TiO2 nanotube.

参考文献

[1] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001, 414(6861): 332-337.

[2] Tong H, Ouyang S X, Bi Y P, et al. Nano-photocatalytic materials: possibilities and challenges[J]. Advanced Materials, 2012, 24(2): 229-251.

[3] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[4] Gordon T R, Cargnello M, Paik T, et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity[J]. Journal of the American Chemical Society, 2012, 134(15): 6751-6761.

[5] Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864): 625-627.

[6] Kilic C, Zunger A. N-type doping of oxides by hydrogen[J]. Applied Physical Letters, 2002, 81(1): 73-75.

[7] 靳治良, 吕功煊. 光催化分解水制氢研究进展[J]. 分子催化, 2004, 18(4): 310-324.

[8] Sun J W, Zhong D K, Gamelin D R. Composite photoanodes for photoelectrochemical solar water splitting[J]. Energy& Environmental Science, 2010, 3(9): 1252-1261.

[9] Murphy A B, Barnes P R F, Randeniya L K, et al, Efficiency of solar water splitting using semiconductor electrodes[J]. International Journal of Hydrogen Energy, 2006, 31(14): 1999-2017.

[10] Sivula K, Formal F L, Gratzal M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach[J]. Chemistry of Materials, 2009, 21(13): 2862-2867.

[11] Cesar I, Sivula K, Kay A, et al. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting[J]. The Jouranl of Physical Chemistry C, 2009, 113(2): 772-782.

[12] Sivula K, Zboril R, Le Formal F, et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach[J]. Journal of American Chemical Society, 2010, 132(21): 7436-7444.

[13] Cherepy N J, Liston B, Lovejoy J A, et al. Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles[J]. The Jouranl of Physical Chemistry B, 1998, 102(5): 770-776.

[14] Gao L, Hu H, Li G J, et al. Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials[J]. Nanoscale, 2014, 6(12): 6463-6467.

[15] Guo S J, Pan X L, Gao H L, et al. Probing the electronic effect of carbon nanotubes in catalysis: NH3 synthesis with Ru nanoparticles[J]. Chemistry-A European Journal, 2010, 16(18): 5379-5384.

[16] Pan X L, Fan Z L, Chen W, et al., Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature materials, 2007, 6(7): 507-511.

[17] Fu Q, Li W X, Yao Y X, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982): 1141-1144.

[18] Deng D H, Yu L, Chen X Q, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013, 125(1): 389-393.

[19] Nishijima K, Fukahori T, Murakami N, et al. Development of a titania nanotube (TNT) loaded site-selectively with Pt nanoparticles and their photocatalytic activities[J]. Applied Catalysis A: General, 2008, 337(1): 105-109.

[20] Oshima T, Lu D L, Ishitani O, et al. Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting[J]. Angewandte Chemie International Edition, 2015, 54(9): 2698-2702.

[21] Yang X, Yu X, Long L Z, et al. Pt nanoparticles entrapped in titanate nanotubes (TNT) for phenol hydrogenation: the confinement effect of TNT[J]. Chemical Communications, 2014, 50(21): 2794-2796.

[22] Yang X, Wu L P, Du L, et al. High performance Pd catalyst using silica modified titanate nanotubes (STNT) as support and its catalysis toward hydrogenation of cinnamaldehyde at ambient temperature[J]. RSC Advances, 2014, 4(108): 63062-63069.

[23] Long L Z, Yu X, Wu L P, et al. Nano CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination[J]. Nanotechnology, 2014, 25(3): 035603.

[24] Chen Q, Du G H, Zhang S, et al. The structure of trititanate nanotubes[J]. Acta Crystallographica Section B Structural Science, 2002, 58(1): 587-593.

[25] Qin L, Pan X X, Wang L, et al. Facile preparation of mesoporous TiO2(B) nanowires with well-dispersed Fe2O3 nanoparticles and their photochemical catalytic behavior[J]. Applied Catalysis B: Environmental, 2014, 150-151: 544-553.

[26] Wu L P, Qiu Y, Xi M, et al. Fabrication of TiO2 nanotubes-assembled hierarchical microsphere with enhanced photocatalytic degradation activity[J]. New Journal of Chemistry, 2015, DOI: 10.1039/C5NJ00373C.

[27] Ohtsu N, Masahashi N, Mizukoshi Y, et al. Hydrocarbon decomposition on a hydrophilic TiO2 surface by UV Irradiation: spectral and quantitative analysis using in-situ XPS technique[J]. Langmuir, 2009, 25(19): 11586-11591.

[28] Armelao L, Bertoncello R, Crociani L, et al. XPS and UV-VIS study of high-purity Fe2O3 thin films obtained using the sol-gel technique[J]. J. Mater. Chem., 1995, 5(1): 79-83.

[29] Ismail A, Bahnemann D. Photochemical splitting of water for hydrogen production by photocatalysis: A review[J]. Solar Energy Materials & Solar Cells, 2014, 128: 85-101.

[30] Xia Y B, Yin L W. Core-shell structuredα-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region[J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18627-18634.

[31] Wu Q, Ouyang J, Xie K, et al. Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts[J]. Journal of Hazardous Materials, 2012, 199-200: 410-417.

[32] Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulate versus tubular support architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.

文章导航

/