欢迎访问《新能源进展》官方网站!今天是
论文

热化学蓄热系统研究进展

  • 王智辉 ,
  • 漥田光宏 ,
  • 杨希贤 ,
  • 刘学成 ,
  • 何兆红 ,
  • 大坂侑吾 ,
  • 黄宏宇
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 日本名古屋大学,名古屋 4648603;
    3. 日本金泽大学,金泽 9201192
王智辉(1988-),男,硕士,研究实习员,主要从事化学蓄热材料与工艺研究。

收稿日期: 2015-04-02

  修回日期: 2015-06-15

  网络出版日期: 2015-08-30

基金资助

中国科学院国际人才计划资助(2015VTC002);
广东省自然科学基金(S2013010014709)

Research Progress on Thermochemical Heat Storage System

  • WANG Zhi-hui ,
  • KUBOTA Mitsuhiro ,
  • YANG Xi-xian ,
  • LIU Xue-cheng ,
  • HE Zhao-hong ,
  • OSAKA Yugo ,
  • HUANG Hong-yu
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Nagoya University, Nagoya 4648603, Japan;
    3. Kanazawa University, Kanazawa 9201192, Japan

Received date: 2015-04-02

  Revised date: 2015-06-15

  Online published: 2015-08-30

摘要

热化学蓄热通过可逆化学反应来储存和释放热量,其蓄热密度高于显热蓄热和相变蓄热,且能够实现能量的长期储存,在未来能源利用领域具有广阔前景。根据热化学蓄热系统的结构,可将其分为开式系统和闭式系统。本文针对开式系统和闭式系统,对蓄热材料、环境气氛条件、反应过程优化以及反应器设计等影响系统性能的重要因素进行概述与讨论,为热化学蓄热系统的发展和实际应用提供参考。

本文引用格式

王智辉 , 漥田光宏 , 杨希贤 , 刘学成 , 何兆红 , 大坂侑吾 , 黄宏宇 . 热化学蓄热系统研究进展[J]. 新能源进展, 2015 , 3(4) : 289 -298 . DOI: 10.3969/j.issn.2095-560X.2015.04.008

Abstract

Thermochemical heat storage technology can store and discharge heat energy by reversible chemical reactions. It shows higher heat storage density and better long-term preservation ability than sensible heat storage and phase change heat storage, so that have a bright future in the energy application fields. According to the system configuration, thermochemical heat storage system is suggested to be divided into open and closed system. In terms of open and closed system, the crucial factors impacting on the system performance, such as heat storage materials, ambient atmosphere conditions, reaction progress optimization and reactor design, are discussed and summarized to provide some references for the development and practical applications of thermochemical heat storage system.

参考文献

[1] Aydin D, Casey S P, Riffat S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367.

[2] Yu N, Wang R Z, Wang L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.

[3] N’tsoukpoe K E, Liu H, Le Pierrès N, et al. A review on long-term sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2385-2396.

[4] 朱冬生, 谭盈科. “沸石-水”封闭吸附循环的传热传质特性[J]. 高校化学工程学报, 1993, 7(1): 62-67.

[5] Chan C W, Ling-Chin J, Roskilly A P. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation[J]. Applied Thermal Engineering, 2013, 50(1): 1257-1273.

[6] Li T X, Wang R Z, Li H. Progress in the development of solid-gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy[J]. Progress in Energy and Combustion Science, 2014, 40: 1-58.

[7] Metcalf S J, Critoph R E, Tamainot-Telto Z. Optimal cycle selection in carbon-ammonia adsorption cycles[J]. International Journal of Refrigeration, 2012, 35(3): 571-580.

[8] Ma Q, Luo L, Wang R Z, et al. A review on transportation of heat energy over long distance: Exploratory development[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1532-1540.

[9] Fujioka K, Hatanaka K, Hirata Y. Composite reactants of calcium chloride combined with functional carbon materials for chemical heat pumps[J]. Applied Thermal Engineering, 2008, 28(4): 304-310.

[10] Zondag H, Kikkert B, Smeding S, et al. Thermochemical seasonal solar heat storage with MgCl2•6H2O: first upscaling of the reactor[C]//proceedings of the IC-SES Conference, F, 2011.

[11] Michel B, Neveu P, Mazet N. Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications[J]. Energy, 2014, 72: 702-716.

[12] Van Essen V, Zondag H, Gores J C, et al. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage[J]. Journal of Solar Energy Engineering, 2009, 131(4): 0410141-0410147.

[13] Hongois S, Kuznik F, Stevens P, et al. Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1831-1837.

[14] Zondag H, Van Essen V, Bleijendaal L, et al. Application of MgCl2•6H2O for thermochemical seasonal solar heat storage[C]//proceedings of the Proceedings IRES 2010 conference, Berlin, F, 2010.

[15] Posern K, Kaps C. Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J]. Thermochimica Acta,  2010, 502(1/2): 73-76.

[16] Kubota M, Matsumoto S, Matsuda H, et al. Chemical Heat Storage with LiOH/LiOH•H2O Reaction for Low-Temperature Heat below 373 K[C]//proceedings of the Advanced Materials Research, F, 2014. Trans Tech Publ.

[17] Li T, Wang R, Kiplagat J K. A target-oriented solid-gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade[J]. AIChE Journal, 2013, 59(4): 1334-1347.

[18] Li T X, Wang R Z, Yan T. Solid–gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer[J]. Energy, 2015, 84: 745-758.

[19] Zamengo M, Ryu J, Kato Y. Thermochemical performance of magnesium hydroxide-expanded graphite pellets for chemical heat pump[J]. Applied Thermal Engineering, 2014, 64(1/2): 339-47.

[20] Ogura H, Yamamoto T, Kage H. Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling[J]. Energy, 2003, 28(14): 1479-1493.

[21] Felderhoff M, Bogdanovic B. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications[J]. International Journal of Molecular Sciences, 2009, 10(1): 325-344.

[22] 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245.

[23] Kato Y, Takahashi R, Sekiguchi T, et al. Study on medium-temperature chemical heat storage using mixed hydroxides[J]. International Journal of Refrigeration, 2009, 32(4): 661-666.

[24] Pardo P, Deydier A, Anxionnaz-Minvielle Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610.

[25] 杨希贤, 漥田光宏, 何兆红, 等. 化学蓄热材料的开发与应用研究进展[J]. 新能源进展, 2014, 2(5): 1-6.

[26] Felderhoff M, Urbanczyk R, Peil S. Thermochemical Heat Storage for High Temperature Applications − A Review[J]. Green, 2013, 3(2): 113-123.

[27] Yan T, Wang R Z, Li T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31.

[28] Fujimoto S, Bilgen E, Ogura H. Dynamic simulation of CaO/Ca(OH)2 chemical heat pump systems[J]. Exergy, An International Journal, 2002, 2(1): 6-14.

[29] Schaube F, Koch L, Wörner A, et al. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage[J]. Thermochimica Acta, 2012, 538: 9-20.

[30] Kim S T, Ryu J, Kato Y. The optimization of mixing ratio of expanded graphite mixed chemical heat storage material for magnesium oxide/water chemical heat pump[J]. Applied Thermal Engineering, 2014, 66(1/2): 274-281.

[31] Tae Kim S, Ryu J, Kato Y. Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump[J]. Progress in Nuclear Energy, 2011, 53(7): 1027-1033.

[32] Myagmarjav O, Ryu J, Kato Y. Lithium bromide-mediated reaction performance enhancement of a chemical heat-storage material for magnesium oxide/water chemical heat pumps[J]. Applied Thermal Engineering, 2014, 63(1): 170-176.

[33] Shkatulov A, Ryu J, Kato Y, et al. Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat[J]. Energy, 2012, 44(1): 1028-1034.

[34] Ishitobi H, Uruma K, Takeuchi M, et al. Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps[J]. Applied Thermal Engineering, 2013, 50(2): 1639-1644.

[35] 顾清之, 赵长颖. 镁-氢化镁热化学蓄热系统数值分析[J]. 化工学报, 2012, 63(12): 3776-3783.

[36] Shen D, Zhao C Y. Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals[J]. Chemical Engineering Science, 2013, 98: 273-281.

[37] 沈丹, 赵长颖. 镁/氢化镁储热系统放热过程优化分析[J]. 储能科学与技术, 2014, 3(1): 36-41.

[38] Bogdanovi? B, Reiser A, Schlichte K, et al. Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage[J]. Journal of Alloys and Compounds, 2002, 345(1/2): 77-89.

[39] Kyaw K, Matsuda H, Hasatani M. Applicability of carbonation/decarbonation reactions to high-tempereture thermal energy storage and temperature upgrading[J]. Journal of Chemical Engineering of Japan, 1996, 29(1): 119-125.

[40] Kato Y, Watanabe Y, Yoshizawa Y. Application of inorganic oxide/carbon dioxide reaction system to a chemical heat pump[C]//proceedings of the Energy Conversion Engineering Conference, 1996 IECEC 96, Proceedings of the 31st Intersociety, F 11-16 Aug, 1996: 763-768.

[41] Barker R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. Journal of Applied Chemistry and Biotechnology, 1974, 24(4/5): 221-227.

[42] Li T, Wang R, Kiplagat J K, et al. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid-gas sorption system for seasonal storage of solar thermal energy[J]. Energy, 2013, 50: 454-467.

[43] 李廷贤, 李卉, 闫霆, 等. 大容量热化学吸附储热原理及性能分析[J]. 储能科学与技术, 2014, 3(3): 236-243.

[44] Lu J, Chen Y, Ding J, et al. High temperature energy storage performances of methane reforming with carbon dioxide in tubular packed reactor[J]. Energy Procedia, 2014, 61: 407-410.

[45] 陈源, 丁静, 陆建峰, 等. 甲烷二氧化碳重整热化学储能实验研究[J]. 工程热物理学报, 2014, 35(8): 1591-1594.

[46] Liu Q, Yabe A, Kajiyama S, et al. A review of study on thermal energy transport system by synthesis and decomposition reactions of methanol[J]. JSME International Journal Series B, 2002, 45(3): 473-480.

文章导航

/