欢迎访问《新能源进展》官方网站!今天是
论文

用于柴油机尾气脱硫捕集器的干式脱硫材料研究进展

  • 刘学成 ,
  • 黄宏宇 ,
  • 大阪侑吾 ,
  • 何兆红 ,
  • 杨希贤 ,
  • 王智辉 ,
  • 王南南
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 日本金泽大学,金泽 9201192
刘学成(1989-),男,博士研究生,主要从事尾气脱硫技术研究。

收稿日期: 2015-06-16

  修回日期: 2015-07-27

  网络出版日期: 2015-08-30

基金资助

自然科学基金外国青年学者研究基金项目(21450110061)

A Review on Development of Dry Desulfurization Materials for DeSOx Filter in Diesel Exhaust

  • LIU Xue-cheng ,
  • HUANG Hong-yu ,
  • OSAKA Yugo ,
  • HE Zhao-hong ,
  • YANG Xi-xian ,
  • WANG Zhi-hui ,
  • WANG Nan-nan
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Kanazawa University, Kakuma, Kanazawa, Ishikawa 9201192, Japan

Received date: 2015-06-16

  Revised date: 2015-07-27

  Online published: 2015-08-30

摘要

柴油机尾气处理系统中脱除氮氧化合物(NOx)的催化剂易受硫的侵蚀而中毒。为避免SOx对净化NOx催化剂的毒害作用,一种有效的解决办法是将脱硫捕集器置于脱除NOx催化剂的系统之前来捕获柴油机尾气中的氧化硫(SOx)。本文针对贵金属催化剂、金属碳酸盐、金属氧化物等几种主要应用于柴油机脱硫捕集器的干式脱硫材料,主要阐述了各自的脱硫原理及性能,并分析了各种脱硫材料的研究现状和工业化应用前景,并指出了高性能且价格低廉的金属氧化物是未来应用于柴油机脱硫捕集器的主要方向。

本文引用格式

刘学成 , 黄宏宇 , 大阪侑吾 , 何兆红 , 杨希贤 , 王智辉 , 王南南 . 用于柴油机尾气脱硫捕集器的干式脱硫材料研究进展[J]. 新能源进展, 2015 , 3(4) : 299 -304 . DOI: 10.3969/j.issn.2095-560X.2015.04.009

Abstract

NOx removal catalysts in the diesel engine exhaust system are sulfur-sensitive. The DeSOx filter upstream of NOx removal system can capture SOx to prevent NOx removal catalysts from SOx poisoning in diesel engine exhaust. This paper is oriented toward some main dry desulfurization materials for DeSOx filter in diesel exhaust system, such as precious metal catalyst, metal carbonate and metal oxide. We laid emphasis on the desulfurization mechanism and performance of each material. The research status and industrial application prospect of those materials were also analyzed. It is pointed out that the cheap metal oxides with good desulfurization performance are appropriate for applications in the diesel DeSOx filters.

参考文献

[1] Fang H, Wang J, Yu R, et al. Sulfur management of NOx adsorber technology for diesel light-duty vehicle and truck applications[J]. SAE Technical Papers, 2003, 01: 3245.

[2] Kim D H. Sulfation and desulfation mechanisms on Pt-BaO/Al2O3 NOx storage-reduction (NSR) catalysts[J]. Catalysis Surveys from Asia, 2014, 18(1): 13-23.

[3] Ottinger N A, Toops T J, Pihl J A, et al. Sulfate storage and stability on representative commercial lean NOx trap components[J]. Applied Catalysis B:Environmental, 2012, 117: 167-176.

[4] Wang Q, Zhu J H, Wei S Y, et al. Sulfur poisoning and regeneration of NOx storage-reduction Cu/K2Ti2O5 catalyst[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7330-7335.

[5] Olsson L, Fredriksson M, Blint R J. Kinetic modeling of sulfur poisoning and regeneration of lean NOx traps[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 31-41.

[6] Choi J S, Partridge W P, Pihl J A, et al. Sulfur and temperature effects on the spatial distribution of reactions inside a lean NOx trap and resulting changes in global performance[J]. Catalysis Today, 2008, 136(1/2): 173-182.

[7] Limousy L, Mahzoul H, Brilhac J F, et al. SO2 sorption on fresh and aged SOx traps[J]. Applied Catalysis B: Environmental, 2003, 42(3): 237-249.

[8] Happel M, Kylhammar L, Carlsson P A, et al. SOx storage and release kinetics for ceria-supported platinum[J]. Applied Catalysis B: Environmental, 2009, 91(3/4): 679-682.

[9] Centi G, Perathoner S. Dynamics of SO2 adsorption–oxidation in SOx traps for the protection of NOx adsorbers in diesel engine emissions[J]. Catalysis Today, 2006, 112(1/4): 174-179.

[10] Limousy L, Mahzoul H, Brilhac J F, et al. A study of the regeneration of fresh and aged SOx adsorbers under reducing conditions[J]. Applied Catalysis B: Environmental, 2003, 45(3): 169-179.

[11] Nakatsuji T, Yasukawa R, Tabata K, et al. Highly durable NOx reduction system and catalysts for NOx storage reduction system[J]. SAE Technical Paper 980932, 1998, doi:10.4271/980932.

[12] Li L, King D L. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 238-244.

[13] Chansai S, Burch R, Hardacre C. Controlling the sulfur poisoning of Ag/Al2O3 catalysts for the hydrocarbon SCR reaction by using a regenerable SOx trap[J]. Topics in Catalysis, 2013, 56(1/8): 243-248.

[14] Nakatsuji T, Yasukawa R, Tabata K, et al. Catalytic reduction system of NOx in exhaust gases from diesel engines with secondary fuel injection[J]. Applied Catalysis B: Environmental, 1998, 17(4): 333-345.

[15] Meunier F C, Ross J R H. Effect of ex situ treatments with SO2 on the activity of a low loading silver-alumina catalyst for the selective reduction of NO and NO2 by propene[J]. Applied Catalysis B: Environmental, 2000, 24(1): 23-32.

[16] Nakatsuji T, Yasukawa R, Tabata K, et al. A highly durable catalytic NOx reduction in the presence of SOx using periodic two steps, an operation in oxidizing conditions and a relatively short operation in reducing conditions[J]. Applied Catalysis B: Environmental, 1999, 21(2): 121-131.

[17] Yoshida K, Asanuma T, Nishioka H, et al. Development of NOx reduction system for diesel aftertreatment with sulfur trap catalyst[J]. SAE Technical Paper, 2007, 01: 0237.

[18] Nishioka H, Asanuma T, Fukuma T. Development of clean diesel NOx after-treatment system with sulfur trap catalyst[J]. SAE International Journal of Fuels and Lubricants, 2010, 3(1): 30-36.

[19] Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents. 1. Theoretical sulfation model[J]. Industrial & Engineering Chemistry Research, 1990, 29(11): 2192-2201.

[20] Borgward R h, Harvey R D. Properties of carbonate rocks related to SO2 reactivity[J]. Environmental Science & Technology, 1972, 6(4): 350-360.

[21] Li L, Chen Z M, Zhang Y H, et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate[J]. Atmospheric Chemistry and Physics, 2006, 6: 2453-2464.

[22] Osaka Y, Kurahara S, Kobayashi N, et al. Study on SO2-absorption behavior of composite materials for DeSO(x) filter from diesel exhaust[J]. Heat Transfer Engineering, 2015, 36(3): 325-332.

[23] 冯亚娜, 赵毅. 金属氧化物在脱硫脱氮技术中的应用[J]. 工业安全与环保, 2003, 29: 3-6.

[24] Kylhammar L, Carlsson P A, Ingelsten H H, et al. Regenerable ceria-based SOx traps for sulfur removal in lean exhausts[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 268-276.

[25] Waqif M, Pieplu A, Saur O, et al. Use of CeO2-Al2O3 as a SO2 sorbent[J]. Solid State Ionics, 1997, 95(1/2): 163-167.

[26] Waqif M, Bazin P, Saur O, et al. Study of ceria sulfation[J]. Applied Catalysis B: Environmental, 1997, 11(2): 193-205.

[27] Saur O, Bensitel M, Saad A B M, et al. The structure and stability of sulfated alumina and titania[J]. Journal of Catalysis, 1986, 99(1): 104-110.

[28] Bensitel M, Saur O, Lavalley J C, et al. An infrared study of sulfated zirconia[J]. Materials Chemistry and Physics, 1988, 19(1/2): 147-156.

[29] Bensitel M, Waqif M, Saur O, et al. The structure of sulfate species on magnesium oxide[J]. The Journal of Physical Chemistry, 1989, 93(18): 6581-6582.

[30] Waqif M, Saur O, Lavalley J C, et al. Evaluation of magnesium aluminate spinel as a sulfur dioxide transfer catalyst[J]. Applied Catalysis, 1991, 71(2): 319-331.

[31] Li L Y, King D L. High-capacity sulfur dioxide absorbents for diesel emissions control[J]. Industrial & Engineering Chemistry Research, 2005, 44(1): 168-177.

[32] Li L, King D L. Cryptomelane as high-capacity sulfur dioxide absorbent for diesel emission control:  A stability study[J]. Industrial & Engineering Chemistry Research, 2005, 44(19): 7388-7397.

[33] Li L, King D L. Synthesis and characterization of silver hollandite and its application in emission control[J]. Chemistry of Materials, 2005, 17(17): 4335-4343.

[34] Jiang R, Shan H, Li C, et al. Preparation and characterization of Mn/MgAlFe as transfer catalyst for SOx abatement[J]. Journal of Natural Gas Chemistry, 2011, 20(2): 191-197.

[35] Kang H T, Zhang C Y, Lv K, et al. Surfactant-assisted synthesis and catalytic activity for SOx abatement of high-surface-area CuMgAlCe mixed oxides[J]. Ceramics International, 2014, 40(4): 5357-5363.

[36] Yu H Q, Wu Y B, Song T B, et al. Preparation of metal oxide doped ACNFs and their adsorption performance for low concentration SO2[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(11): 1102-1106.

[37] Osaka Y, Tsujiguchi T, Kodama A, et al. Study on the optimized design of DeSOx filter operating at low temperature in diesel exhaust[J]. Journal of Chemical Engineering of Japan, 2014, 47(7): 555-560.

 
文章导航

/