含水合物松散沉积物声速剖面成像技术研究
收稿日期: 2015-05-17
修回日期: 2015-06-29
网络出版日期: 2015-08-30
基金资助
国家自然科学基金(41104086)
Study of the Technology to Obtain the Sound Velocity Profile of Hydrate Bearing Unconsolidated Sediments
Received date: 2015-05-17
Revised date: 2015-06-29
Online published: 2015-08-30
本文基于射线理论的超声层析成像技术,采用自适应消噪技术除去天然气水合物(NGH)实验模型固有噪声,运用直射线追踪法和基于联合迭代重建算法(Simultaneous Iterative Reconstruction Techniques, SIRT)的迭代重建法实现超声层析成像的正演和反演,针对水合物实验获取的波形,得到NGH在松散沉积物中形成时的地层声速剖面结构图像。结果表明,使用超声层析成像技术获取的含NGH沉积物的二维声速剖面结构能够准确反应不同时刻沉积物中NGH饱和度及分布情况,并且纵横波速度剖面结构的变化趋势大体相同。同时本文也结合常用的NGH声速预测模型,针对实验数据,对声速与NGH饱和度之间的关系进行了讨论。
方跃龙 , 胡高伟 , 刘昌岭 , 赵仕俊 . 含水合物松散沉积物声速剖面成像技术研究[J]. 新能源进展, 2015 , 3(4) : 309 -318 . DOI: 10.3969/j.issn.2095-560X.2015.04.011
According to the ultrasonic tomography technology based on ray theory, the adaptive noise cancellation was adopted to remove the premise of autoclave under the inherent noise. The straight ray-tracing method and the iterative algorithm based on SIRT algorithm were applied to realize forward modeling and inversion of the ultrasonic tomography. Then the acoustic velocity profile distribution images of hydrate formation in loose sediments were obtained. The results showed that the two-dimensional sound velocity profile structures of hydrate bearing sediments obtained by using ultrasonic tomography technology could accurately reflect the distribution of hydrate in sediments at different time and saturation. The P-wave velocity profile structures fit in well with S-wave velocity profile structures. Besides, with the experimental data, several velocity models were used to validate the relationship between the sonic velocity and the saturation of hydrate.
[1] Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates—A potential energy source for the 21st century[J]. Journal of petroleum science and engineering, 2007, 56: 14-31.
[2] 梁劲, 王明君, 陆敬安, 等. 南海北部神狐海域含天然气水合物沉积层的速度特征[J]. 天然气工业, 2013, 33(7): 29-35.
[3] Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56: 127-135.
[4] Priest J A, Rees E V L, Clayton C R I. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11). DOI: 10.1029/2009JB006284.
[5] Best A I, Priest J A, Clayton C R I, et al. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions[J]. Earth and Planetary Science Letters, 2013, 368: 78-87.
[6] 业渝光, 张剑, 胡高伟, 等. 天然气水合物饱和度与声学参数响应关系的实验研究[J]. 地球物理学报, 2008, 51(4): 1156-1164.
[7] 胡高伟, 业渝光, 张剑, 等. 南海沉积物中天然气水合物饱和度与声学特性的关系[J]. 石油学报, 2013, 34(6): 1112-1118.
[8] 王浩全, 韩焱, 殷黎. 基于超声CT的混凝土质量阵列检测方法研究[J]. 计算机工程与应用, 2010, 46(15): 239-241.
[9] 王振宇, 刘国华. 混凝土构件层析成像的试验研究[J]. 土木工程学报, 2005, 38(6): 110-114.
[10] Deidda G P, Ranieri G. Seismic tomography imaging of an unstable embankment[J]. Engineering geology, 2005, 82(1): 32-42.
[11] Netzeband G L, Hübscher C P, Gajewski D, et al. Seismic velocities from the Yaquina forearc basin off Peru: evidence for free gas within the gas hydrate stability zone[J]. International Journal of Earth Sciences, 2005, 94: 420-432.
[12] 胡高伟, 业渝光, 张剑, 等. 基于弯曲元技术的含水合物松散沉积物声学特性研究[J]. 地球物理学报, 2012, 55(11): 3762-3773.
[13] Huisman J A, Hubbard S S, Redman J D, et al. Measuring soil water content with ground penetrating radar: a review[J]. Vadose Zone Journal, 2003, 2: 476-491.
[14] Wright J F, Nixon F M, Dallimore S R, et al. A method for direct measurement of gas hydrate amounts based on the bulk dielectric properties of laboratory test media[C]. Fourth International Conference on Gas Hydrate, Yokohama, 2002, 745-749.
[15] 陈云敏, 周燕国, 黄博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 7(28): 874-880.
[16] 王海峰, 陈伟, 黄秋元, 等. 基于LMS算法自适应噪声抵消器的分析研究[J]. 计算机与数字工程, 2009, 37(3): 85-87.
[17] 毛伟伟, 于素萍. 走时层析成像正反演方法研究[J].西安邮电学院学报, 2010, 15(1): 123-126.
[18] 许令周, 范宜仁, 夏卫芳. ART算法中射线矩阵加权的BPT算法[J]. 计算物理, 2011, 28(5): 725-729.
[19] 刘良琼, 刘江平, 张英德. 井间地震射线走时层析成像数值模拟[J]. 工程地球物理学报, 2004, 1(5): 441-446.
[20] 王开林, 杨圣奇, 苏承东. 不同粒径大理岩样声学特性的研究[J]. 煤田地质与勘探, 2004, 32(2): 30-32.
[21] 孙春岩, 章明昱, 牛滨华, 等. 天然气水合物微观模式及其速度参数估算方法研究[J]. 地学前缘, 2003, 10(1): 191-198.
[22] 胡高伟, 业渝光, 张剑, 等. 沉积物中天然气水合物微观分布模式及其声学响应特征[J]. 天然气工业, 2010, 30(3): 120-124, 140.
[23] 张琳, 王树立, 周诗岽, 等. 表面活性剂用于促进气体水合物生成研究的进展[J]. 应用化学, 2014, 31(5): 505-512.
/
〈 |
|
〉 |