纤维素催化氢解制取多元醇的研究进展
收稿日期: 2015-09-28
修回日期: 2015-10-19
网络出版日期: 2015-12-30
基金资助
国家自然科学基金(51376185);
国家重点基础研究发展计划(国家973 计划,2012CB215304);
国家高技术研究发展计划(863计划,2012AA101806);
广东省自然科学基金(S2013010011612)
Advances in Polyols Production by Catalytic Hydrogenolysis of Cellulose
Received date: 2015-09-28
Revised date: 2015-10-19
Online published: 2015-12-30
刘琪英 , 廖玉河 , 徐 莹 , 王铁军 , 张 琦 , 马隆龙 . 纤维素催化氢解制取多元醇的研究进展[J]. 新能源进展, 2015 , 3(6) : 405 -414 . DOI: 10.3969/j.issn.2095-560X.2015.06.001
Due to climate and environment problems posed by use of fossil resources, developing advanced technologies for sustainable production of value added chemicals from renewable biomass is of scientific and practical importance. Among those, polyols production from cellulose by catalytic hydrogenolysis has attracted more and more attention during the last decade. In this review, we summarized the state-of-art technologies in such area with the aims to the products of sorbitol/mannitol, isosorbide and small molecular polyols (ethylene glycol and propylene glycol), the employed catalysts and the possible reaction pathways. Finally, we analyzed the present problems and the possible trends in the future.
Key words: cellulose; catalytic hydrogenolysis; polyol; reaction pathway
[1] Statistical Review of World Energy[EB/OL]. BP, 2008.
[2] INDERWILDI O, KING D. Quo vadis biofuels?[J]. Energy Environmental Science, 2009, 2: 343-346.
[3] 沈宜泓, 王帅, 罗琛, 等. 生物质利用新途径: 多元醇催化合成可再生燃料和化学品[J]. 化学进展, 2007, 19( 2/3): 431-436.
[4] RUPPERT A M, WEINBERG K, PALKOVITS R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals[J]. Angewandte Chemie- International Edition, 2012, 51(11): 2564-2601.
[5] ROSE M, PALKOVITS R. Isosorbide as a renewable platform chemical for versatile applications--quo vadis?[J]. Chemsuschem, 2012, 5(1): 167-176.
[6] REGINA P, KAMEH T, JOANNA P, et al. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts[J]. Green Chemistry, 2010, 12: 972-978.
[7] PALKOVITS R, TAJVIDI K, RUPPERT A, et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chemical Communications, 2011, 47(1): 576-578.
[8] GEBOERS J, VAN DE VYVER S, et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010, 46(20): 3577-3579.
[9] JAN G, VAN DE VYVER S, CARPENTIER K, et al. Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C[J]. Green Chemistry, 2011, 13: 2167-2174.
[10] HILGERT J, MEINE N, RINALDI R, et al. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols[J]. Energy & Environmental Science, 2013, 6(1): 92-96.
[11] LUO C, WANG S A, LIU H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie-International Edition, 2007, 46(40): 7636-7639.
[12] FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie- International Edition, 2006, 45(31): 5285-5287.
[13] DENG T, LIU H. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt–SnOx/Al2O3 catalysts[J]. Green Chemistry, 2013, 15(1): 116-124.
[14] HIROKAZU K, YUKIKO I, TASUKU K, et al. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts[J]. Green Chemistry, 2011, 13: 326-333.
[15] YAN N, ZHAO C, LUO C, et al. One-step conversion of
cellobiose to C6-alcohols using a ruthenium nanocluster catalyst[J]. Journal of the American Chemical Society, 2006, 128: 8714-8715.
[16] DENG W P, LIU M, TAN X S, et al. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts[J]. Journal of Catalysis, 2010, 271(1): 22-32.
[17] LIU M, DENG W, ZHANG Q, et al. Polyoxometalate- supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions[J]. Chemical Communications, 2011, 47: 9717-9719.
[18] DENG W P, TAN X S, FANG W H, et al. Conversion of Cellulose into Sorbitol over Carbon Nanotube-Supported Ruthenium Catalyst[J]. Catalysis Letters, 2009, 133(1/2): 167-174.
[19] LIANG G F, CHENG H Y, LI W, et al. Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite[J]. Green Chemistry, 2012, 14: 2146-2149.
[20] VAN DE VYVER S, GEBOERS J, DUSSELIER M, et al. Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers[J]. Chemsuschem, 2010, 3(6): 698-701.
[21] VAN DE VYVER S, GEBOERS J, SCHUTYSER W, et al. Tuning the acid/metal balance of carbon nanofiber- supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. Chemsuschem, 2012, 5(8): 1549-1558.
[22] PANG J F, WANG A Q, ZHENG M Y, et al. Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts[J]. Green Chemistry, 2012, 14: 614-617.
[23] LI N, WANG A Q, ZHENG M Y, et al. Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst[J]. Chemsuschem, 2010, 3: 818-821.
[24] YANG P F, KOBAYASHI H, HARA K, et al. Phase Change of Nickel Phosphide Catalysts in the Conversion of Cellulose into Sorbitol[J]. Chemsuschem, 2012, 5(5): 920-926.
[25] HIROKAZU K, YUKIKO I, TASUKU K, et al. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts[J]. Chemical Communications, 2011, 47: 2366-2368.
[26] LIANG G, WU C, HE L, et al. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst[J]. Green Chemistry, 2011, 13(4): 839-842.
[27] OP DE BEECK B, GEBOERS J, VAN DE VYVER S, et al. Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon[J]. Chemsuschem, 2013, 6(1): 199-208.
[28] DE ALMEIDA R M, LI J, NEDERLOF C, et al. Cellulose Conversion to Isosorbide in Molten Salt hydrate Media[J]. Chemsuschem, 2010, 3: 325-328.
[29] JI N, ZHANG T, ZHENG M Y, et al. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J]. Angewandte Chemie-International Edition, 2008, 47(44): 8510-8513.
[30] ZHAO G H, ZHENG M Y, WANG A Q, et al. Catalytic Conversion of Cellulose to Ethylene Glycol over Tungsten Phosphide Catalysts[J]. Chinese Journal of Catalysis, 2010, 31(8): 928-932.
[31] JI N, ZHANG T, ZHENG M Y, et al. Catalytic conversion
of cellulose into ethylene glycol over supported carbide catalysts[J]. Catalysis Today, 2009, 147(2): 77-85.
[32] JI N, ZHENG M Y, WANG A Q, et al. Nickel-Promoted Tungsten Carbide Catalysts for Cellulose Conversion: Effect of Preparation Methods[J]. Chemsuschem, 2012, 5(5): 939-944.
[33] ZHOU L K, WANG A Q, LI C Z, et al. Selective Production of 1,2-Propylene Glycol from Jerusalem Artichoke Tuber using Ni-W2C/AC Catalysts[J]. Chemsuschem, 2012, 5(5): 932-938.
[34] PANG J F, ZHENG M Y, WANG A Q, et al. Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol[J]. Industrial& Engineering Chemistry Research, 2011, 50(11): 6601-6608.
[35] LI C Z, ZHENG M Y, WANG A Q, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose,hemicellulose and lignin[J]. Energy & Environmental Science, 2012, 5(4): 6383-6390.
[36] ZHANG M Y, WANG A Q, JI N, et al. Metal Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol[J]. Chemical Communications, 2010, 3: 63-66.
[37] ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chemical Communications, 2010, 46(6): 862-864.
[38] TAI Z J, ZHANG J Y, WANG A Q, et al. Temperature- controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chemical Communications, 2012, 48(56): 7052-7054.
[39] LIU Y, LUO C, LIU H C. Tungsten Trioxide Promoted Selective Conversion of Cellulose into Propylene Glycol and Ethylene Glycol on a Ruthenium Catalyst[J]. Angewandte Chemie-International Edition, 2012, 51(13): 3249-3253.
[40] WANG X C, MENG L Q, WU F, et al. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts[J]. Green Chemistry, 2012a,14(3): 758-765.
[41] WANG X C, WU F, YAO S X, et al. Ni-Cu/ZnO-catalyzed Hydrogenolysis of Cellulose for the Production of 1,2-Alkanediols in Hot Compressed Water[J]. Chemistry Letters, 2012b, 41(5): 476-478.
[42] DENG T, SUN J, LIU H. Cellulose conversion to polyols on supported Ru catalysts in aqueous basic solution[J]. Science China Chemistry, 2010, 53(7): 1476-1480.
[43] BAEK I G, SU J Y, PARK E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresource Technology, 2012, 114: 684-690.
[44] SU J Y, BAEK I G, Kim Y T, et al. Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5[J]. Korean J. Chem. Eng., 2011, 228(3): 744-750.
/
〈 |
|
〉 |