欢迎访问《新能源进展》官方网站!今天是
论文

纤维素催化氢解制取多元醇的研究进展

  • 刘琪英 ,
  • 廖玉河 ,
  • 徐 莹 ,
  • 王铁军 ,
  • 张 琦 ,
  • 马隆龙
展开
  • 1. 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广州 510640;
    2. 中国科学院大学,北京 100049
刘琪英(1975-),男,博士,副研究员,主要从事生物质催化转化为燃料和化学品研究。

收稿日期: 2015-09-28

  修回日期: 2015-10-19

  网络出版日期: 2015-12-30

基金资助

国家自然科学基金(51376185);
国家重点基础研究发展计划(国家973 计划,2012CB215304);
国家高技术研究发展计划(863计划,2012AA101806);
广东省自然科学基金(S2013010011612)

Advances in Polyols Production by Catalytic Hydrogenolysis of Cellulose

  • LIU Qi-ying ,
  • LIAO Yu-he ,
  • XU Ying ,
  • WANG Tie-jun ,
  • ZHANG Qi ,
  • MA Long-long
Expand
  • 1. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-09-28

  Revised date: 2015-10-19

  Online published: 2015-12-30

摘要

化石资源日益减少和使用化石资源带来的气候与环境问题促使人们将目光转向可再生的生物质资源。由生物质资源制备高附加值的化学品已成为国内外的研究热点。通过催化氢解将纤维素转化为多元醇化学品是一种可行的手段。本文总结了由纤维素氢解制备多元醇的最新研究进展,重点介绍了纤维素转化为山梨醇/甘露醇、异山梨醇和小分子多元醇(丙二醇和乙二醇)的催化剂体系以及可能的转化途径。最后分析了该领域存在的问题和今后的研究趋势。

本文引用格式

刘琪英 , 廖玉河 , 徐 莹 , 王铁军 , 张 琦 , 马隆龙 . 纤维素催化氢解制取多元醇的研究进展[J]. 新能源进展, 2015 , 3(6) : 405 -414 . DOI: 10.3969/j.issn.2095-560X.2015.06.001

Abstract

Due to climate and environment problems posed by use of fossil resources, developing advanced technologies for sustainable production of value added chemicals from renewable biomass is of scientific and practical importance. Among those, polyols production from cellulose by catalytic hydrogenolysis has attracted more and more attention during the last decade. In this review, we summarized the state-of-art technologies in such area with the aims to the products of sorbitol/mannitol, isosorbide and small molecular polyols (ethylene glycol and propylene glycol), the employed catalysts and the possible reaction pathways. Finally, we analyzed the present problems and the possible trends in the future.

参考文献

[1] Statistical Review of World Energy[EB/OL]. BP, 2008.

[2] INDERWILDI O, KING D. Quo vadis biofuels?[J]. Energy Environmental Science, 2009, 2: 343-346.

[3] 沈宜泓, 王帅, 罗琛, 等. 生物质利用新途径: 多元醇催化合成可再生燃料和化学品[J]. 化学进展, 2007, 19( 2/3): 431-436.

[4] RUPPERT A M, WEINBERG K, PALKOVITS R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals[J]. Angewandte Chemie- International Edition, 2012, 51(11): 2564-2601.

[5] ROSE M, PALKOVITS R. Isosorbide as a renewable platform chemical for versatile applications--quo vadis?[J]. Chemsuschem, 2012, 5(1): 167-176.

[6] REGINA P, KAMEH T, JOANNA P, et al. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts[J]. Green Chemistry, 2010, 12: 972-978.

[7] PALKOVITS R, TAJVIDI K, RUPPERT A, et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chemical Communications, 2011, 47(1): 576-578.

[8] GEBOERS J, VAN DE VYVER S, et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010, 46(20): 3577-3579.

[9] JAN G, VAN DE VYVER S, CARPENTIER K, et al. Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C[J]. Green Chemistry, 2011, 13: 2167-2174.

[10] HILGERT J, MEINE N, RINALDI R, et al. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols[J]. Energy & Environmental Science, 2013, 6(1): 92-96.

[11] LUO C, WANG S A, LIU H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie-International Edition, 2007, 46(40): 7636-7639.

[12] FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie- International Edition, 2006, 45(31): 5285-5287.

[13] DENG T, LIU H. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt–SnOx/Al2O3 catalysts[J]. Green Chemistry, 2013, 15(1): 116-124.

[14] HIROKAZU K, YUKIKO I, TASUKU K, et al. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts[J]. Green Chemistry, 2011, 13: 326-333.

[15] YAN N, ZHAO C, LUO C, et al. One-step conversion of

cellobiose to C6-alcohols using a ruthenium nanocluster catalyst[J]. Journal of the American Chemical Society, 2006, 128: 8714-8715.

[16] DENG W P, LIU M, TAN X S, et al. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts[J]. Journal of Catalysis, 2010, 271(1): 22-32.

[17] LIU M, DENG W, ZHANG Q, et al. Polyoxometalate- supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions[J]. Chemical Communications, 2011, 47: 9717-9719.

[18] DENG W P, TAN X S, FANG W H, et al. Conversion of Cellulose into Sorbitol over Carbon Nanotube-Supported Ruthenium Catalyst[J]. Catalysis Letters, 2009, 133(1/2): 167-174.

[19] LIANG G F, CHENG H Y, LI W, et al. Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite[J]. Green Chemistry, 2012, 14: 2146-2149.

[20] VAN DE VYVER S, GEBOERS J, DUSSELIER M, et al. Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers[J]. Chemsuschem, 2010, 3(6): 698-701.

[21] VAN DE VYVER S, GEBOERS J, SCHUTYSER W, et al. Tuning the acid/metal balance of carbon nanofiber- supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. Chemsuschem, 2012, 5(8): 1549-1558.

[22] PANG J F, WANG A Q, ZHENG M Y, et al. Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts[J]. Green Chemistry, 2012, 14: 614-617.

[23] LI N, WANG A Q, ZHENG M Y, et al. Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst[J]. Chemsuschem, 2010, 3: 818-821.

[24] YANG P F, KOBAYASHI H, HARA K, et al. Phase Change of Nickel Phosphide Catalysts in the Conversion of Cellulose into Sorbitol[J]. Chemsuschem, 2012, 5(5): 920-926.

[25] HIROKAZU K, YUKIKO I, TASUKU K, et al. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts[J]. Chemical Communications, 2011, 47: 2366-2368.

[26] LIANG G, WU C, HE L, et al. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst[J]. Green Chemistry, 2011, 13(4): 839-842.

[27] OP DE BEECK B, GEBOERS J, VAN DE VYVER S, et al. Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon[J]. Chemsuschem, 2013, 6(1): 199-208.

[28] DE ALMEIDA R M, LI J, NEDERLOF C, et al. Cellulose Conversion to Isosorbide in Molten Salt hydrate Media[J]. Chemsuschem, 2010, 3: 325-328.

[29] JI N, ZHANG T, ZHENG M Y, et al. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J]. Angewandte Chemie-International Edition, 2008, 47(44): 8510-8513.

[30] ZHAO G H, ZHENG M Y, WANG A Q, et al. Catalytic Conversion of Cellulose to Ethylene Glycol over Tungsten Phosphide Catalysts[J]. Chinese Journal of Catalysis, 2010, 31(8): 928-932.

[31] JI N, ZHANG T, ZHENG M Y, et al. Catalytic conversion

of cellulose into ethylene glycol over supported carbide catalysts[J]. Catalysis Today, 2009, 147(2): 77-85.

[32] JI N, ZHENG M Y, WANG A Q, et al. Nickel-Promoted Tungsten Carbide Catalysts for Cellulose Conversion: Effect of Preparation Methods[J]. Chemsuschem, 2012, 5(5): 939-944.

[33] ZHOU L K, WANG A Q, LI C Z, et al. Selective Production of 1,2-Propylene Glycol from Jerusalem Artichoke Tuber using Ni-W2C/AC Catalysts[J]. Chemsuschem, 2012, 5(5): 932-938.

[34] PANG J F, ZHENG M Y, WANG A Q, et al. Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol[J]. Industrial& Engineering Chemistry Research, 2011, 50(11): 6601-6608.

[35] LI C Z, ZHENG M Y, WANG A Q, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose,hemicellulose and lignin[J]. Energy & Environmental Science, 2012, 5(4): 6383-6390.

[36] ZHANG M Y, WANG A Q, JI N, et al. Metal Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol[J]. Chemical Communications, 2010, 3: 63-66.

[37] ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chemical Communications, 2010, 46(6): 862-864.

[38] TAI Z J, ZHANG J Y, WANG A Q, et al. Temperature- controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chemical Communications, 2012, 48(56): 7052-7054.

[39] LIU Y, LUO C, LIU H C. Tungsten Trioxide Promoted Selective Conversion of Cellulose into Propylene Glycol and Ethylene Glycol on a Ruthenium Catalyst[J]. Angewandte Chemie-International Edition, 2012, 51(13): 3249-3253.

[40] WANG X C, MENG L Q, WU F, et al. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts[J]. Green Chemistry, 2012a,14(3): 758-765.

[41] WANG X C, WU F, YAO S X, et al. Ni-Cu/ZnO-catalyzed Hydrogenolysis of Cellulose for the Production of 1,2-Alkanediols in Hot Compressed Water[J]. Chemistry Letters, 2012b, 41(5): 476-478.

[42] DENG T, SUN J, LIU H. Cellulose conversion to polyols on supported Ru catalysts in aqueous basic solution[J]. Science China Chemistry, 2010, 53(7): 1476-1480.

[43] BAEK I G, SU J Y, PARK E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresource Technology, 2012, 114: 684-690.

[44] SU J Y, BAEK I G, Kim Y T, et al. Direct  conversion  of  cellulose  into polyols or H2 over Pt/Na(H)-ZSM-5[J]. Korean J. Chem. Eng., 2011, 228(3): 744-750.

文章导航

/