钙钛矿敏化太阳电池制备工艺的优化研究
收稿日期: 2015-09-07
修回日期: 2015-11-03
网络出版日期: 2015-12-30
基金资助
国家自然科学基金面上项目(21073193,21273241);
广东省科技计划协同创新与平台环境建设项目(2014A05050305);
广东省自然科学基金(2015A030310501);
佛山市院市合作项目(2013HK100411);
江苏省能量转换材料与技术重点实验室开放课题基金(MTEC-2015M01)
Study on the Fabrication of Perovskites Sensitized Solar Cells
Received date: 2015-09-07
Revised date: 2015-11-03
Online published: 2015-12-30
近年来,有机金属卤化物钙钛矿太阳电池因制备条件温和、光吸收强、能耗低、光电转化效率高等优点成为备受瞩目的研究热点。本文采用一步法制备钙钛矿材料甲胺碘化铅(CH3NH3PbI3),并以廉价的聚(3-己基噻吩) (P3HT)为空穴传输材料在大气环境下制备钙钛矿敏化太阳电池。其中,通过调控TiO2浆料与松油醇、乙基纤维素的配比,分别制备具有250 nm、600 nm和1 000 nm三种不同厚度的TiO2纳米颗粒多孔薄膜光阳极,并系统考察钙钛矿前驱体溶液旋涂量对敏化电极结构形貌及光吸收性能的影响。太阳电池光电特性测试结果表明:当TiO2多孔层厚度为600 nm、钙钛矿前驱体溶液的旋涂量为40 μl时,CH3NH3PbI3能够较为完全地覆盖在多孔TiO2的表面,且钙钛矿材料的晶粒尺寸合适,TiO2孔道结构未被堵塞,有利于空穴导体的填充以及空穴的转移与传输,优化后的太阳电池光电转化效率达到5.17%。
关键词: CH3NH3PbI3; 敏化太阳电池; P3HT; 制备工艺
王 楠 , 梁柱荣 , 王军霞 , 徐雪青 , 严卓理 , 何燕妙 , 钟杏桃 . 钙钛矿敏化太阳电池制备工艺的优化研究[J]. 新能源进展, 2015 , 3(6) : 429 -434 . DOI: 10.3969/j.issn.2095-560X.2015.06.004
Perovskites sensitized solar cells have attracted great interest owing to the easy fabrication conditions, excellent absorption property, low energy consumption, and high power conversion efficiency (PCE). Herein, we successfully synthesized CH3NH3PbI3 via one-step method and fabricated perovskite sensitized solar cells by using P3HT as hole-transport material under ambient condition. Mesoporous TiO2 films with different thickness (i.e. 250 nm, 600 nm, and 1 000 nm) have been obtained by regulating the mole ratios of TiO2 pastes, terpineol, and ethyl cellulose. Furthermore, the influences of precursor volume on the microstructures and optical properties for the perovskite sensitized films were also systematically investigated. Results showed that when the thickness of the TiO2 mesoporous layer was ~600 nm, and the volume of perovskite precursor solutions was 40 μl, the perovskite layer with desirable grain sizes is covered sufficiently onto the TiO2 surface, and the pores between TiO2 nanoparticles were still remained, which favors the effective filling of hole-transport materials and is beneficial to the photo-generated hole transport in device. The optimized perovskite sensitized solar cells exhibited a PCE of 5.17%.
Key words: CH3NH3PbI3; solar cell; P3HT; fabrication process
[1] LI J Z, KONG F T, WU G H, et al. TiO2/dye/electrolyte interface modification for dye-sensitized solar cells[J]. Acta Phys. -Chim. Sin., 2013, 29(9): 1851-1864.
[2] SHI J, DONG J, LV S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property[J]. Applied Physics Letters, 2014, 104(6): 063901.
[3] JEON NJ, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014,13(9): 897-903.
[4] XIAO M, HUANG F, HUANG W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte Chemie-International Edition, 2014, 53(37): 9898-9903.
[5] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[6] CHEN Q, ZHOU H, HONG Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. Journal of the American Chemical Society, 2014, 136(2): 622-625.
[7] XIE F, CHOY W C, WANG C, et al. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics[J]. Advance Materials, 2013, 25(14): 2051-2055.
[8] CHEN L, XIE C, CHEN Y. Optimization of the power conversion efficiency of room temperature-fabricated polymer solar cells utilizing solution processed tungsten oxide and conjugated polyelectrolyte as electrode interlayer[J]. Advanced Functional Materials, 2014, 24(25): 3986-3995.
[9] KIM J, KIM G, KIM T K, et al. Efficient planar- heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer[J]. Journal of Materials Chemistry A, 2014, 2(41): 17291-17296.
[10] LI W, DONG H, WANG L, et al. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination[J]. Journal of Materials Chemistry A, 2014, 2(33): 13587-13592.
[11] KIM H S, MORA-SERO I, Gonzalez-Pedro V, et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells[J]. Nature Communications, 2013, 4: 2242.
[12] SUAREZ B, GONZALEZ-PEDRO V, RIPOLLES T S, et al. Recombination study of combined halides (Cl, Br, I) perovskite solar cells[J]. Journal of Physical Chemistry Letters, 2014, 5(10): 1628-1635.
[13] JUAREZ-PEREZ E J, WUSSLER M, FABREGAT- SANTIAGO F, et al. Role of the selective contacts in the performance of lead halide perovskite solar cells[J]. Journal of Physical Chemistry Letters, 2014, 5(4): 680-685.
[14] DUALEH A, MOEHL T, TETREAULT N, et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells[J]. Acs Nano, 2014, 8(1): 362-373.
[15] ZHAO Y, ZHU K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2880-2884.
[16] LEIJTENS T, Lauber B, Eperon G E, et al. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells[J]. Journal of Physical Chemistry Letters, 2014, 5(7): 1096-1102.
[17] BI D, YANG L, BOSCHLOO G, et al. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells[J]. The Journal of Physical Chemistry Letters, 2013, 4(9): 1532-1536.
[18] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[19] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9): 897-903.
[20] GIROTTO C, VOROSHAZI E, CHEYNS D, et al. Solution- processed MoO3 thin films as a hole-injection layer for organic solar cells[J]. ACS Applied Material and Interfaces, 2011, 3(9): 3244-3247.
[21] YANG Z B, CHUEH C C, ZUO F, et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition[J]. Advanced Energy Materials, 2015, 5(13): 1500328.
[22] LIANG Z R, ZHANG S H, Xu X Q, et al. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions[J]. RSC Advances, 2015, 5, 60562-60569.
[23] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite- sensitized solar cells[J]. Nature, 2013, 499: 316-319.
[24] NIU G D, GUO X D, WANG L D. Review of recent progress in chemical stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 8970-8980.
[25] GONZALEZ-PEDRO V, JUAREZ-PEREZ E J, ARSYAD W S, et al. General working principles of CH3NH3PbX3 perovskite solar cells[J]. Nano Letters, 2014, 14(2): 888-893.
/
〈 |
|
〉 |