欢迎访问《新能源进展》官方网站!今天是
论文

晶体缺陷对多晶硅太阳电池反向漏电影响研究

  • 陈文浩 ,
  • 黄红娜 ,
  • 刘仁中 ,
  • 张 斌 ,
  • 李红波
展开
  • 海润光伏科技股份有限公司,江苏 江阴 214407
陈文浩(1990-),男,硕士,工程师,主要从事光伏材料与器件方向研究。

收稿日期: 2015-09-24

  修回日期: 2015-11-04

  网络出版日期: 2015-12-30

Impact of Crystal Defects on Shunting of Mutlicrystalline Silicon Solar Cells

  • CHEN Wen-hao ,
  • HUANG Hong-na ,
  • LIU Ren-zhong ,
  • ZHANG Bin ,
  • LI Hong-bo
Expand
  • Hareon Solar Technology Co. Ltd., Jiangyin, 214407, Jiangsu, China

Received date: 2015-09-24

  Revised date: 2015-11-04

  Online published: 2015-12-30

摘要

多晶硅太阳电池所使用的多晶硅材料往往因铸造过程中温度、应力等方面控制不佳,导致晶体缺陷形成。本文通过研究“黑丝”电池片以及点状烧穿电池片这两种在电学性能上表现为严重的反向线性漏电的异常电池片,对比观察其异常所处位置的表面及其解理断面的微观结构,发现导致这两种反向漏电现象出现的本质原因是由于其所处位置的硅片结构存在位错或其他晶体缺陷。这种由于晶体缺陷导致的反向漏电现象会使电池在工作过程中局部过热,给光伏发电系统带来巨大隐患。

本文引用格式

陈文浩 , 黄红娜 , 刘仁中 , 张 斌 , 李红波 . 晶体缺陷对多晶硅太阳电池反向漏电影响研究[J]. 新能源进展, 2015 , 3(6) : 459 -463 . DOI: 10.3969/j.issn.2095-560X.2015.06.008

Abstract

Multicrystaline silicon materials used for solar cells are usually under poor control of temperature and stress during the casting which may induce defects. Two kinds of abnormal solar cells, “black yarn” solar cells and dotted burnthrough solar cells, were studied in this paper. These two solar cells show severe reverse linear shunt current on the electrical properties. By observing the microstructures of the surface and cleavage plane on the abnormal areas, we find the ultimate reason of these two kinds of reverse currents is that there are dislocations or other crystal defects in the abnormal areas. The reverse current caused by defects could lead to local overheating of the solar cells under operation. This phenomenon may bring huge risk to the photovoltaic power generation systems.

参考文献

[1] NAM T H, SABURI T, NAKATA Y, et al. Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys[J]. Materials Transactions, JIM, 1990, 31(12): 1050-1056.

[2] 席珍强, 杨德仁, 陈君. 铸造多晶硅的研究进展[J]. 材料导报, 2001, 15(2): 67-69.

[3] YANG D R. Solar cell material[M]. Beijing: Chemical Industry Press, 2006. 188-191.

[4] TAKAHASHI I, USAMI N, KUTSUKAKE K, et al. Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed[J]. Journal of Crystal Growth, 2010, 312(7): 897-901.

[5] STOKKAN G, RIEPE S, LOHNE O, et al. Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon[J]. Journal of Applied Physics, 2007, 101(5): 053515.

[6] 郭宽新, 夏正月, 张斌. 高效多晶铸锭工艺与电池基本特征[C]. 第十届中国太阳能级硅及光伏发电研讨会. 南通, 2014.

[7] GONG H, LI M, ZHOU L. A study of mottling phenomenon on textured multicrystalline silicon wafers and its potential effects on solar cell performance[J]. Materials Science in Semiconductor Processing, 2014, 26: 149-154.

[8] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社. 2000.

[9] 李养贤, 郝秋艳, 杨帅, 等. 直拉硅片杂质缺陷的控制与利用[J]. 河北工业大学学报, 2004, 33(2): 67-71.

[10] 伊纪禄, 刘文祥, 马洪斌, 等. 太阳电池热斑现象和成因的分析[J]. 电源技术, 2012, 36(6): 816-818.

文章导航

/