水合物导热系数和热扩散率实验研究
收稿日期: 2015-10-08
修回日期: 2015-11-09
网络出版日期: 2015-12-30
基金资助
国家自然科学基金项目(41276043,51474197);
国家海洋地质专项项目(GHZ2012006003)
Experimental Study on Thermal Conductivities and Diffusivities of Gas Hydrate
Received date: 2015-10-08
Revised date: 2015-11-09
Online published: 2015-12-30
基于Hot Disk热常数分析系统的单面测试功能,建立了一套新的天然气水合物热物性测试系统,并实验研究了I型水合物(甲烷)、H型水合物(甲烷和甲基环己烷)的导热系数和H型水合物的热扩散率。结果显示甲烷水合物样品导热系数随温度的变化非常小,平均导热系数约为0.53 W/(m•K)。结合文献报道和实验分析发现零孔隙率甲烷水合物的导热系数大约为0.7 W/(m•K),水合物样品在压缩过程中虽然减少了孔隙,但是却引起晶体破碎,导致导热系数与理想值差距较大。水合物的导热系数与水合物的类型及客体分子有关,大体顺序为I型 > II型 > H型 > 半笼型水合物。甲烷−甲基环己烷生成的H型水合物热扩散率为0.205 ~ 0.26 mm2/s,和其他类型的水合物相当;水合物的热扩散率大约为水的两倍,而导热系数和水相近。
李栋梁 , 梁德青 . 水合物导热系数和热扩散率实验研究[J]. 新能源进展, 2015 , 3(6) : 464 -468 . DOI: 10.3969/j.issn.2095-560X.2015.06.009
By improving the Hot Disk thermal constant analysis system, a new thermal properties measurement method of natural gas hydrate was established. The thermal conductivities of structure I hydrate (methane), structure H hydrate (methane-methylcyclohexane) and the thermal diffusivities of structure H hydrate were studied. The results show that the thermal conductivities of methane hydrate sample were very small, and the average thermal conductivity was about 0.53 W/(m•K). By analysis of the experimental data and the literatures, the optimized thermal conductivity of the zero-porosity methane hydrate is about 0.7 W/(m•K). Moreover, the order of magnitude for the thermal conductivity were structure I > structure II > structure H > semi-clathrate hydrate. The thermal conductivity depended on not only the cage type but also the species of the guest molecules. The thermal diffusivity of the hydrate is about twice that of the water, while the thermal conductivity is similar to that of water.
Key words: gas hydrate; thermal conductivity; thermal diffusivity
[1] SLOAN E D. Clathrate Hydrates of Natural Gases[M]. 2nd ed. New York: Marcel Dekker, Inc., 1998.
[2] DICKENS G R. The Phanerozoic Carbon Cycle with A Gas Hydrate Capacitor[J]. Geochimica et Cosmochimica Acta, 2002, 66: A183.
[3] KVENVOLDEN K A, LORENSON T D. Global Occurrences of Gas Hydrate[C]//11th International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001, 462-467.
[4] WAITE W F, PINKSTON J, KIRBY S H. Preliminary laboratory thermal conductivity measurements in pure methane hydrate and methane hydrate-sediment mixtures: a progress report[C]//Proceedings of the Fourth International Conference on Gas Hydrate, Yokohama, Japan, 2002.
[5] COOK J G, LEAIST D G. An exploratory study of the thermal conductivity of methane hydrate[J]. Geophysical Research Letters, 1983, 10(5): 397-399.
[6] ROSSs R G, ANDERSSON P. Clathrate and other solid phases in the tetrahydrofuran-water system: thermal conductivity and heat capacity under pressure[J]. Can Journal of the Chemistry, 1982, 60(7): 881-892.
[7] 石磊. 气体水合物导热性能研究[D]. 广州: 中国科学院广州能源研究所, 2002.
[8] STOLL R D, BRYAN G M. Physical Properties of sediments containing gas hydrates[J]. Journal of the Geophysical Research, 1979, 84(10): 1629-1634.
[9] 黄犊子, 樊栓狮, 梁德青, 等. 水合物合成及导热系数测定[J]. 地球物理学报, 2005, 48(5): 1125-1131.
[10] LI D, LIANG D. Experimental study on the effective thermal conductivity of methane hydrate-bearing sand[J]. International Journal of Heat and Mass Transfer, 2016, 92: 8-14.
[11] LI D, LIANG D, PENG H, et al. Thermal conductivities of methane-methylcyclohexane and tetrabutylammonium bromide clathrate hydrate[J]. International Journal of Thermal Analysis and Calorimetry, 2016, in press.
[12] WAITE W F. Thermal properties of methane gas hydrates[R]. US: Geological Survey Fact Sheet FS-2007-3041, 2007.
[13] ROSEBAUM E J, ENGLISH N J, JOHNSON K J, et al. Thermal Conductivity of Methane Hydrate from Experiment and Molecular Simulation[J]. Journal of Physical Chemistry B, 2007, 111: 13194.
[14] HUANG D, FAN S. Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution[J]. Journal of Chemical and Engineering Data, 2004, 49: 1479-1482.
[15] ENGLISH N J. Effects of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: Application to methane hydrates[J]. Molecular Physics, 2008, 106: 1887-1898.
[16] JIANG H, MYSHAKIN E M, JORDAN K D, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate[J]. Journal of Physical Chemistry B, 2008, 112: 10207-10216
[17] WAN L, LIANG D, WU N, et al. Molecular dynamics simulations of the mechanisms of thermal conduction in methane hydrates[J]. Science China-Chemistry. 2012, 55: 167-174.
[18] GUPTA A, KNEAFSEY T J, MORIDIS G J, et al. Composite thermal conductivity in a large heterogeneous porous methane hydrate sample[J]. Journal of Physical Chemistry B, 2006, 110: 16384-16392.
[19] KRIVCHIKOV A I, GORODILOV B Y, KOROYLUK O A, et al. Thermal conductivity of methane-hydrate[J]. Journal of Low Temperature Physics, 2005, 139: 639-702.
[20] ANDERSSON P, ROSS R G. Effect of guest molecule size on the thermal conductivity and heat capacity of clathrate hydrates[J]. Journal of Physics C: Solid State Physics, 1983, 16: 1423-1432.
[21] WAITE W F, GILBERT L Y, WINTERS W J, et al. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data[J]. Review of Scientific Instruments, 2006, 77: 044904.
[22] WAITE W F, STERN L A, KIRBY S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. Geophysical Journal International, 2007, 169: 767-774.
[23] DEMARTIN B J. Laboratory Measurements of the Thermal Conductivity and Thermal Diffusivity of Methane Hydrate at Simulated in Situ Conditions[D]. M.S. Thesis, Georgia Institute of Technology, 2001.
[24] KUMAR P, TURNER D, SLOAN E D. Thermal diffusivity measurements of porous methane hydrate and hydrate-sediment mixtures[J]. Journal of Geophysical Research, 2004, 109: B01207.
/
〈 |
|
〉 |