熔融盐对高含氮废弃物气流床气化产气调质与污染物脱除特性研究
收稿日期: 2015-12-14
修回日期: 2016-01-06
网络出版日期: 2016-02-28
基金资助
国家自然科学基金(51506208);
广东省科技计划(2012B050500007)
Conditioning and Desorption of Pollutants of Syngas from Entrained Flow Gasification of Nitrogen-rich Wood Waste in Molten Salt
Received date: 2015-12-14
Revised date: 2016-01-06
Online published: 2016-02-28
在生物质气流床(5 kg/h)气化和熔融盐调质净化装置上,进行了熔融盐对高含氮废弃物气流床气化产气的调质与污染物脱除实验,考察了不同熔融盐温度、不同静液高度对出口气体调质和含N、S、Cl污染物脱除特性的影响。结果表明:经过熔融盐调质后,产气中CO与CO2浓度下降,H2浓度明显上升。当温度从380℃升高至580℃时,H2/CO值提高至7.3。随着静液高度的提高,出口气体中CO2与CO浓度下降,H2浓度由30.1%提高至36.8%;熔融盐对高含氮废弃物气流床气化产气中含N、S、Cl污染物有较明显的脱除效果,H2S、SO2、HCl与含氮污染物中的HCN与NOx已完全脱除,当温度为580℃、静液高度为67.5 mm时,NH3脱除率达到96%。
冯宜鹏 , 王小波 , 赵增立 , 李海滨 , 郑安庆 . 熔融盐对高含氮废弃物气流床气化产气调质与污染物脱除特性研究[J]. 新能源进展, 2016 , 4(1) : 10 -14 . DOI: 10.3969/j.issn.2095-560X.2016.01.002
In this work, a molten salt reactor coupling to a 5 kg/h biomass entrained flow reactor was used for conditioning and purification of syngas from nitrogen-rich wood waste. The effects of molten salt temperature and static liquid height on the outlet gas composition and desorption of pollutants of syngas were investigated. The results showed that the concentrations of CO2 and CO decreased sharply after the conditioning in molten salt, while the concentration of H2 rose obviously. When the temperature increased from 380oC to 580oC, the H2/CO ratio reached to 7.3. With the increasing static liquid height, the concentrations of CO2 and CO had a decrease, while the concentrations of H2 rose from 30.1% to 36.8%. The molten salt was an efficient technology for removing the nitrogenous, sulphureous and chlorinated pollutants in syngas obtained from entrained flow gasification of nitrogen-rich wood waste. H2S, SO2, HCl, HCN and NOx had been removed entirely. When temperature reached to 580oC, and static liquid height was 67.5mm, the removal rate of NH3 had reached to 96%.
[1] 钱小瑜. 世界人造板工业发展现状与趋势[J]. 中国人造板, 2011(9): 1-7. DOI: 10.3969/j.issn.1673-5064.2011.09.001.
[2] 王欣, 周定国. 我国人造板原材料的创新与可持续发展[J]. 林业科技开发, 2009, 23(1): 5-9. DOI: 10.3969/j.issn.1000-8101.2009.01.002.
[3] 刘庆. 中国人造板行业发展专题研究[D]. 上海: 上海外国语大学, 2014.
[4] 钱小瑜. 调整结构 积极创新 推动我国人造板产业升级[J]. 林产工业, 2015, 42(3): 3-10. DOI: 10.3969/j.issn.1001-5299.2015.03.001.
[5] 贺小翠, 穆亚平. 废旧人造板资源的回收与再利用[J]. 木材加工机械, 2008, 19(1): 50-53. DOI: 10.3969/j.issn.1001-036X.2008.01.013.
[6] 母军, 于志明, 张德荣, 等. 废弃人造板热解特性及其产物性质的研究[J]. 北京林业大学学报, 2011, 33(1): 125-128.
[7] 陈世华, 冯永顺, 母军, 等. 废弃人造板热解冷凝液的抑菌特性[J]. 北京林业大学学报, 2012, 34(6): 131-136.
[8] 李海滨, 袁振宏, 马晓茜. 现代生物质能利用技术[M]. 北京: 化学工业出版社, 2012.
[9] 朱锡峰. 生物质热解原理与技术[M]. 合肥: 中国科学技术大学出版社, 2006.
[10] RAHARJO S, YASUAKI U, YOSHIIE R, et al. Hot gas desulfurization and regeneration characteristics with molten alkali carbonates[J]. International journal of chemical engineering and applications, 2010, 1(1): 96-102. DOI: 10.7763/IJCEA.2010.V1.16.
[11] 王小波, 刘安琪, 赵增立, 等. 熔融盐粗燃气调质实验研究[J]. 现代化工, 2012, 32(4): 43-46. DOI: 10.3969/j.issn.0253-4320.2012.04.010.
[12] 冯宜鹏, 王小波, 曾碧凡, 等. 松木粉气流床气化特性实验研究[J]. 燃料化学学报, 2015, 43(5): 589-597. DOI: 10.3969/j.issn.0253-2409.2015.05.011.
[13] 王磊. 生物质气化过程中燃料固有氮演变行为研究[D]. 大连: 大连理工大学, 2010: 25-27.
[14] 吴远波. 垃圾焚烧过程中NOx前驱体形成研究[D]. 广州: 中国科学院大学, 2007: 16-18.
[15] 李小明, 王小波, 常胜, 等. 熔融盐对生物质粗燃气的组分调整实验研究[J]. 燃料化学学报, 2014, 42(6): 671-676.
[16] 孙志向. 生物质热解过程中燃料氮转化及碱/碱土金属离子催化转化的实验研究[D]. 北京: 华北电力大学, 2014.
/
〈 |
|
〉 |