欢迎访问《新能源进展》官方网站!今天是
论文

聚乙烯吡咯烷酮对甲烷水合物形成热力学条件的影响

  • 唐翠萍 ,
  • 戴兴学 ,
  • 梁德青
展开
  • 中国科学院广州能源研究所,中国科学院天然气水合物重点实验室,广州 510640
唐翠萍(1977-),女,博士,副研究员,主要进行天然气水合物抑制研究。

收稿日期: 2015-09-29

  修回日期: 2015-12-15

  网络出版日期: 2016-02-28

基金资助

国家自然科学基金(41406103)

Equilibrium Conditions for Methane Hydrate in the Presence of Polyvinylpyrrolidone Aqueous Solutions

  • TANG Cui-Ping ,
  • DAI Xing-Xue ,
  • LIANG De-Qing
Expand
  • Key Laboratory of Natural Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2015-09-29

  Revised date: 2015-12-15

  Online published: 2016-02-28

摘要

低剂量抑制剂对天然气水合物形成条件的影响对组合抑制剂的开发和选用具有重要意义。本文采用定容压力搜索法,在282.6 K ~ 290.3 K范围内测定了纯水和含低剂量抑制剂聚乙烯吡咯烷酮水溶液的甲烷水合物形成相平衡条件。测量结果显示0.5wt%、5wt%和15wt%的聚乙烯吡咯烷酮对水合物形成条件有促进作用,但促进作用不大,分析认为高分子的加入降低了溶液的活度,但是增加了溶液对甲烷的溶解度,而活度降低和甲烷溶解度增加对甲烷水合物形成相平衡条件影响相反。

本文引用格式

唐翠萍 , 戴兴学 , 梁德青 . 聚乙烯吡咯烷酮对甲烷水合物形成热力学条件的影响[J]. 新能源进展, 2016 , 4(1) : 28 -32 . DOI: 10.3969/j.issn.2095-560X.2016.01.005

Abstract

Influence of low dosage hydrate inhibitors on gas hydrate formation condition is important for developments and chooses of combined hydrate inhibitors. By using polyvinylpyrrolidone aqueous solutions, Eexperimental data on the equilibrium conditions for methane hydrate in the presence of polyvinylpyrrolidone aqueous solutions  with different concentrations within the temperature range from 282.6 K to 290.3 K in the temperature range of 282.6 K ~ 290.3 K were reported in this work. Measurements were made using an isochoric pressure-search method. The results show polyvinylpyrrolidone with the concentration from 0.5wt% to 15wt% has a little promoting effect on methane hydrate formation equilibrium conditions, and it is thought that addition of the polymer of polyvinylpyrrolidone can decrease the solution activity, but can increase the solubility of methane in this polymer solution.

参考文献

[1] SLOAN E D. Clathrate hydrate of nature gases[M]. 2nd ed. New York: Marcel Dekker Inc, 1998: 27-49.

[2] HAMMERSCHMIDT E G. Formation of gas hydrates in natural gas transmission Lines[J]. Industrial & engineering chemistry, 1934, 26(8): 851-855. DOI: 10.1021/ie50296a010.

[3] DHOLABHAI P D, ENGLEZOS P, KALOGERAKIS N, et al. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions[J]. The Canadian journal of chemical engineering, 1991, 69(3): 800-805. DOI: 10.1002/cjce.5450690324.

[4] MAEKAWA T. Equilibrium conditions for clathrate hydrates formed from methane and aqueous propanol solutions[J]. Fluid phase equilibria, 2008, 267(1): 1-5. DOI: 10.1016/j.fluid.2008.02.006.

[5] MOHAMMADI A H, KRAOUTI I, RICHON D. Methane hydrate phase equilibrium in the presence of NaBr, KBr, CaBr2, K2CO3, and MgCl2 aqueous solutions: Experimental measurements and predictions of dissociation conditions[J]. The journal of chemical thermodynamics, 2009, 41(6): 779-782. 10.1016/j.jct.2009.01.004.

[6] KELLAND M A. History of the development of low dosage hydrate inhibitors[J]. Energy & fuel, 2006, 20(3): 825-847. DOI: 10.1021/ef050427x.

[7] KELLAND M A, REYES F T, TROVIK K W. Tris(dialkylamino)cyclopropenium chlorides: Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam as gas hydrate kinetic inhibitor[J]. Chemical engineering science, 2013, 93: 423-428. DOI: 10.1016/j.ces.2013.02.033.

[8] DARABOINA N, PACHITSAS S, VON SOLMS N. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation[J]. Fuel, 2015, 139: 554-560. DOI: 10.1016/j.fuel.2014.09.013.

[9] CLARK L W, ANDERSON J. Development of effective combined kinetic hydrate inhibitor/corrosion inhibitor (KHI/CI) products[C]// Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, 2005. Trondheim, Norway, 2005: 1249-1257.

[10] VON JOSHI S, GRASSO G A, LAFOND P G, et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical engineering science, 2013, 97: 198-209. DOI: 10.1016/j.ces.2013.04.019.

[11] LEE J D, ENGLEZOS P. Enhancement of the performance of gas hydrate kinetic inhibitors with polyethylene oxide[J]. Chemical engineering science, 2005, 60(19): 5323-5330. DOI: 10.1016/j.ces.2005.05.023.

[12] LEE J D, WU H J, ENGLEZOS P. Cationic starches as gas hydrate kinetic inhibitors[J]. Chemical engineering science, 2007, 62(23): 6548-6555. DOI: 10.1016/j.ces.2007.07.041.

[13] HEIDARYAN E, SALARABADI A, MOGHADASI J, et al. A new high performance gas hydrate inhibitor[J]. Journal of natural gas chemistry, 2010, 19(3): 323-326. DOI: 10.1016/S1003-9953(09)60060-8.

[14] 王燕鸿, 陈玉娟, 包玲, 等. 聚乙烯唑啉作用下甲烷水合物分解的分子动力学模拟[J]. 物理化学学报, 2012, 28(7): 1683-1690. DOI: 10.3866/PKU.WHXB201204113.

[15] VERMA V K. Gas hydrates from liquid hydrocarbon-water systems[D]. Michigan: University of Michigan, 1974.

[16] NAKAMURA T, MAKINO T, SUGAHARA T, et al. Stability boundaries of gas hydrates helped by methane--structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane[J]. Chemical engineering science, 2003, 58(2): 269-273. DOI: 10.1016/S0009-2509(02)00518-3.

[17] MOHAMMADI A H, ANDERSON R, TOHIDI B. Carbon monoxide clathrate hydrates: Equilibrium data and thermodynamic modeling[J]. AIChE journal, 2005, 51(10): 2825-2833. DOI: 10.1002/aic.10526.

[18] 刘伟, 金翔龙, 初凤友, 等. 海底天然气水合物相平衡的影响因素[J]. 海洋地质前沿, 2011, 27(5): 16-23.

[19] 景孔华, 康惠宝, 王利生. 改进PSRK模型预测高分子溶液的活度系数[J]. 计算机与应用化学, 2005, 22(11): 1001-1004. DOI: 10.3969/j.issn.1001-4160.2005.11.012.

文章导航

/