合成应用于木质纤维素水解液精制的吸附树脂
收稿日期: 2015-11-03
修回日期: 2015-12-17
网络出版日期: 2016-02-28
基金资助
国家自然科学基金(51508547)
Synthesis and Application of Adsorption Resin to Purification of Lignocellulose Biomass Hydrolysate
Received date: 2015-11-03
Revised date: 2015-12-17
Online published: 2016-02-28
对稀酸水解液进行精制脱毒是生化法中高效利用木质纤维素类生物质不可缺少的处理过程。本文以三种混合木质纤维素类生物质水解液为研究对象,以苯乙烯等为原料合成吸附树脂,考察了二乙烯基苯(DVB)浓度、单体和交联剂比例、非极性和弱极性单体等条件对吸附树脂吸附效果的影响。研究发现,固液比1.4∶40的情况下,不经过任何其他工艺,仅用吸附树脂,糠醛的去除率可以达到76%以上,5-羟甲基糠醛去除率可超过40%,可溶性木质素的最高去除率约为87%,而总糖损失率在8%左右。一定范围内提高交联剂的量可提高树脂的吸附性能,从而提高抑制剂的去除率。添加丙烯酸甲酯(MA)单体来改变树脂的极性,并不能提高树脂对每种抑制剂的吸附。
施丝兰 , 张海荣 , 林晓清 , 杨 丹 , 黄 超 , 陈新德 . 合成应用于木质纤维素水解液精制的吸附树脂[J]. 新能源进展, 2016 , 4(1) : 68 -73 . DOI: 10.3969/j.issn.2095-560X.2016.01.011
Purification of diluted-acid hydrolysate is essential for efficient utilization of lignocellulose biomass. In this work, synthesis and application of adsorption resin to several kind of lignocellulose biomass hydrolysate by diluted-acid were studied, including the effects on adsorption of concentration of divinyl benzene (DVB), the ratio of monomer and cross-linking agent, the difference of nonpolar and weak-polar monomers. It was found that, without other processes assisting, the prepared adsorption resins were able to remove more than 76% furfural, over 40% 5-hydroxymethyl furfural (5-HMF), and about 87% soluble lignin (SL) at the solid-liquid ratio of 1.4:40, while the loss of total sugar was just near 8%. Besides, the studies were shown that increase of cross-linking agent was likely to improve the adsorption capacity and the removal ratio of inhibitors. As a weak-polar monomer, methyl acrylate (MA) was unable to increase every desired adsorbate.
Key words: hydrolysate; purification; adsorption resin; synthesis; adsorption
[1] 蒋剑春. 生物质能源转化技术与应用(I)[J]. 生物质化学工程, 2007, 41(3): 59-65. DOI: 10.3969/j.issn.1673-5854.2007.03.016.
[2] 陈洪章, 王岚. 生物质能源转化技术与应用−生物质的生物转化技术原理与应用(VIII)[J]. 生物质化学工程, 2008, 42(4): 67-72. DOI: 10.3969/j.issn.1673-5854.2008.04.014.
[3] SUN Y, CHENG J Y. Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresource technology, 2002, 83(1): 1-11. DOI: 10.1016/S0960-8524(01)00212-7.
[4] PALMQVIST E, HAHN-H?GERDAL B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification[J]. Bioresource technology, 2000, 74(1): 17-24. DOI: 10.1016/S0960-8524(99)00160-1.
[5] LARSSON S, REIMANN A, NILVEBRANT N O, et al. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce[J]. Applied biochemistry and biotechnology, 1999, 77(1/3): 91-103. DOI: 10.1385/ABAB:77:1-3:91.
[6] 陈骏, 方宁红, 张志丕, 等. 一种大孔吸附树脂的合成及在红霉素提取中的应用[J]. 中国抗生素杂志, 2002, 27(5): 270-272. DOI: 10.3969/j.issn.1001-8689.2002.05.005.
[7] 马振山. 大孔吸附树脂在药学领域中的研究应用[J]. 中成药, 1997(12): 40-41.
[8] 刘海霞, 牛鹏飞, 王峰, 等. 大孔吸附树脂对大枣多糖提取液的脱色条件研究[J]. 食品与发酵工业, 2007, 33(10): 180-184.
[9] 袁竹连, 陈山, 韩忠, 等. 大孔树脂分离纯化糖厂混合汁浮渣多酚的初步研究[J]. 食品与发酵工业, 2007, 33(3): 68-71. DOI: 10.3321/j.issn:0253-990X.2007.03.018.
[10] 刘新铭, 赵建国, 侯素霞. NKA-II型大孔吸附树脂处理苯胺废水的研究[J]. 生态环境, 2006, 15(5): 909-913. DOI: 10.3969/j.issn.1674-5906.2006.05.004.
[11] 钱庭宝, 刘维琳, 李金和. 吸附树脂及其应用[M]. 北京: 化学工业出版社, 1990.
[12] GOUVEIA E R, DO NASCIMENTO R T, SOUTO-MAIOR A M, et al. Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar[J]. Química nova, 2009, 32(6): 1500-1503. DOI: 10.1590/S0100-40422009000600026.
[13] 耿啸天. 高选择性吸附树脂结构设计及在中药复方活性成分提取中的应用[D]. 天津: 南开大学, 2010.
[14] 许会平. 树脂结构表征方法研究[D]. 无锡: 江南大学, 2008.
/
〈 |
|
〉 |