掺氢对生物燃气燃烧的影响研究
收稿日期: 2016-03-14
修回日期: 2016-05-08
网络出版日期: 2016-06-27
Effect of Hydrogen Addition on Biogas Combustion
Received date: 2016-03-14
Revised date: 2016-05-08
Online published: 2016-06-27
为了研究掺氢对生物燃气燃烧特性的内在影响规律,本文开展了生物燃气掺氢层流燃烧的实验和CHEMKIN仿真研究。实验结果表明,当量比一定时,火焰燃烧速度随着掺氢比的增大而增大;大当量比情况下,随着掺氢比的增大,燃烧速度的增大尤为明显。仿真结果表明,掺氢后H和OH的摩尔分数变化较大。利用反应产物生成速率(ROP)分析法对掺氢燃烧过程的化学反应路径进行分析发现,由于H2浓度对基元反应O + H2 = H + OH及OH + H2 = H + H2O的影响显著,导致后续关键基元反应中H和OH的生成和消耗情况发生变化,特别是掺氢浓度较大时,将造成H的大量增加,同时OH也有一定增加,从而导致预混燃烧速度的显著增大。
李 源 , 李国岫 , 李洪萌 . 掺氢对生物燃气燃烧的影响研究[J]. 新能源进展, 2016 , 4(3) : 165 -171 . DOI: 10.3969/j.issn.2095-560X.2016.03.001
To study the effect of hydrogen addition on biogas combustion, experiment and CHEMKIN simulation of the gas mixture combustion were conducted. The experiment shows that the burning velocity of the gas mixture gets higher with the increase of hydrogen addition at a constant equivalence ratio, and the aggrandizement is more obvious with larger equivalence ratio. The simulation shows that the mole fractions of H and OH grow up with the hydrogen addition. The chemical reaction paths of the mixing hydrogen combustion process were analyzed by rate of production (ROP). The results show that H2 affects a lot to the elementary reactions O + H2 = H + OH and OH + H2 = H + H2O. It changes the formation and consumption of H and OH in subsequent reaction, and the H and OH are rapidly accumulated especially in high percentage of hydrogen addition. The rate of premixed combustion was therefore accelerated obviously.
[1] 张勇, 黄佐华, 廖世勇, 等. 天然气/氢气燃烧特性研究[J]. 内燃机学报, 2006, 24(3): 200-205. DOI: 10.3321/j.issn:1000-0909.2006.03.002.
[2] 佚名. 生物质能源开发需要提速[J]. 农业工程技术: 新能源产业, 2014(8): 14-15.
[3] 马君, 马兴元, 刘琪. 生物质能源的利用与研究进[J]. 安徽农业科学, 2012, 40(4): 2202-2206. DOI: 10.3969/ j.issn.0517-6611.2012.04.106.
[4] 郑士卓. 低热值气体燃料层流燃烧特性研究[D]. 北京: 北京交通大学, 2009. DOI: 10.7666/d.y1576700.
[5] 汤成龙. 氢气/气体燃料层流燃烧特性及液滴碰撞动力学基础研究[D]. 西安: 西安交通大学, 2011.
[6] 李明亮. 基于定容燃烧弹的低热值气体掺氢火焰特性研究[D]. 北京: 北京交通大学, 2015.
[7] 张红光, 白小磊, 韩雪娇, 等. 甲烷掺混氢气的燃烧特性试验研究[J]. 兵工学报, 2011, 32(2): 230-235.
[8] CHENG Y, TANG C L, HUANG Z H. Kinetic analysis of H2 addition effect on the laminar flame parameters of the C1-C4 n-alkane-air mixtures: from one step overall assumption to detailed reaction mechanism[J]. International journal of hydrogen energy, 2015, 40(1): 703-718. DOI: 10.1016/j.ijhydene.2014.11.010.
[9] 翟越. 生物质燃气预混层流火焰传播特性及其不稳定性研究[D]. 北京: 北京交通大学, 2015.
[10] 李星. 甲烷在高温氧化剂中燃烧特性研究[D]. 北京: 北京交通大学, 2014.
[11] WANG H, YOU X Q, JOSHI A V, et al. High-temperature combustion reaction model of H2/CO/C1-C4 compounds [EB/OL]. (2007-05). http://ignis.usc.edu/USC_Mech_II.htm.
[12] K. J. Hughes, Turányi T, A. R. Clague , et al. Development and testing of a comprehensive chemical mechanism for the oxidation of methane[J]. International Journal of Chemical Kinetics, 2001, 33(9):513–538.
[13] SMITH G P, GOLDEN D M. GRI-mech version 3.0 [EB/OL]. (1999-07-30). http://combustion.berkeley.edu/gri-mech/index.html
[14] LU T F, LAW C K. A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry[J]. Combustion and flame, 2008, 154(4): 761-774. DOI: 10.1016/j.combustflame. 2008.04.025.
[15] 王泽鑫. CH4在O2/CO2气氛中燃烧机理的研究[D]. 沈阳: 东北大学, 2012.
[16] 谈宁馨, 王静波, 华晓筱, 等. 甲基环己烷的高温燃烧机理及动力学模拟[J]. 高等学校化学学报, 2011, 32(8): 1832-1837.
[17] 张云鹏, 钟北京. 正庚烷部分预混对冲火焰中苯环的生成机理[J]. 清华大学学报(自然科学版), 2008, 48(5): 904-908. DOI: 10.3321/j.issn:1000-0054.2008.05.036.
/
〈 |
|
〉 |