NiFe2O4为载氧体的生物质半焦化学链燃烧热力学模拟研究
收稿日期: 2016-02-24
修回日期: 2016-05-06
网络出版日期: 2016-06-27
基金资助
国家自然科学基金(51406214, 51406208);
广东省科技计划项目(2012B050500007,2013B050800008)
Thermodynamic Analysis of Biomass Char Chemical Looping Combustion with NiFe2O4 as Oxygen Carrier
Received date: 2016-02-24
Revised date: 2016-05-06
Online published: 2016-06-27
本文建立了以铁酸镍(NiFe2O4)为载氧体的生物质半焦化学链燃烧模型,利用HSC Chemistry 5.0软件对生物质半焦和NiFe2O4载氧体之间的化学链燃烧反应进行了热力学计算,模拟载氧体被半焦还原以及载氧体被空气氧化两个步骤的氧化还原过程,得到燃料反应器的优化操作参数为:载氧体和生物质半焦的摩尔比(O/BC)为1.5,燃料反应器的温度为800℃。热力学分析显示,NiFe2O4在化学链燃烧反应中是按照NiFe2O4→Ni-Fe2O3→ Ni-Fe3O4→Ni-FeO→Ni-Fe的顺序逐级被还原的。氧化过程的模拟说明,在空气气氛中,失去的晶格氧可以恢复到初始的程度,而实验手段得到的氧化产物的X射线衍射图则证明,通过氧化,被还原的载氧体可以大部分恢复到NiFe2O4尖晶石结构。
刘 帅 , 黄 振 , 何 方 , 郑安庆 , 沈 阳 , 李海滨 . NiFe2O4为载氧体的生物质半焦化学链燃烧热力学模拟研究[J]. 新能源进展, 2016 , 4(3) : 172 -178 . DOI: 10.3969/j.issn.2095-560X.2016.03.002
A model of biomass char chemical looping combustion was built using NiFe2O4 as oxygen carrier. Thermodynamic analysis and process simulation of the combustion were performed with software of HSC Chemistry 5.0 based on Gibbs free energy minimization principle. The simulation result for the reduction stage showed that the system performed best with the molar ratio of oxygen carrier to biomass char (O/BC) being 1.5 at the reactor temperature of 800°C. The thermodynamic analysis showed that the oxygen carrier was gradually reduced as a sequence of NiFe2O4→Ni-Fe2O3→ Ni-Fe3O4→Ni-FeO→Ni-Fe. The simulation result for the oxidation stage demonstrated that the lattice oxygen could recover to the original degree thermodynamically, while the XRD pattern of the oxidized NiFe2O4 particles confirmed that the reduced oxygen carrier could be re-oxidized to form NiFe2O4 spinel under the atmosphere of air from an experimental point of view.
[1] ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in energy and combustion science, 2012, 38(2): 215-282. DOI: 10.1016/j.pecs. 2011.09.001.
[2] GUPTA P, VELAZQUEZ-VARGAS L G, FAN L S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy & fuels, 2007, 21(5): 2900-2908. DOI: 10.1021/ ef060512k.
[3] PUIG-ARNAVAT M, BRUNO J C, CORONAS A. Review and analysis of biomass gasification models[J]. Renewable and sustainable energy reviews, 2010, 14(9): 2841-2851. DOI: 10.1016/ j.rser.2010.07.030.
[4] KUO Y L, HSU W M, CHIU P C, et al. Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process[J]. Ceramics international, 2013, 39(5): 5459-5465. DOI: 10.1016/j.ceramint. 2012.12.055.
[5] HUANG Z, HE F, FENG Y P, et al. Characteristics of biomass gasification using chemical looping with iron ore as an oxygen carrier[J]. International journal of hydrogen energy, 2013, 38(34): 14568-14575. DOI: 10.1016/j.ijhydene.2013.09.022.
[6] FAN L S, ZENG L, LUO S W. Chemical-looping technology platform[J]. AIChE journal, 2015, 61(1): 2-22. DOI: 10.1002/aic.14695.
[7] LI F X, KIM H R, SRIDHAR D, et al. Syngas chemical looping gasification process: oxygen carrier particle selection and performance[J]. Energy & fuels, 2009, 23(8): 4182-4189. DOI: 10.1021/ef900236x.
[8] HUANG Z, HE F, FENG Y P, et al. Biomass char direct chemical looping gasification using nio-modified iron ore as an oxygen carrier[J]. Energy & fuels, 2014, 28(1): 183-191. DOI: 10.1021/ef401528k.
[9] PEÑA J A, LORENTE E, ROMERO E, et al. Kinetic study of the redox process for storing hydrogen: reduction stage[J]. Catalysis today, 2006, 116(3): 439-444. DOI: 10.1016/j.cattod. 2006.05.068.
[10] YANG S, KIM K, BAEK J I, et al. Spinel Ni(Al, Fe)2O4 solid solution as an oxygen carrier for chemical looping combustion[J]. Energy & fuels, 2012, 26(7): 4617-4622. DOI: 10.1021/ef300712u.
[11] BALAT M, BALAT M, KIRTAY E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: gasification systems[J]. Energy conversion and management, 2009, 50(12): 3158-3168. DOI: 10.1016/ j.enconman.2009.08.013.
[12] CARRERO-MANTILLA J, LLANO-RESTREPO M. Chemical equilibria of multiple-reaction systems from reaction ensemble Monte Carlo simulation and a predictive equation of state: combined hydrogenation of ethylene and propylene[J]. Fluid phase equilibria, 2006, 242(2): 189-203. DOI: 10.1016/j.fluid. 2006.02.007.
[13] MITTAL V K, BERA S, NITHYA R, et al. Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS[J]. Journal of nuclear materials, 2004, 335(3): 302-310. DOI: 10.1016/j.jnucmat.2004.05.010.
[14] MITTAL V K, CHANDRAMOHAN P, BERA S, et al. Cation distribution in NixMg1−xFe2O4 studied by XPS and Mössbauer spectroscopy[J]. Solid state communications, 2006, 137(1/2): 6-10. DOI: 10.1016/j.ssc.2005.10.019.
/
| 〈 |
|
〉 |