祁连山冻土区天然气水合物形成对岩芯电阻率及介电常数的影响
收稿日期: 2016-04-18
修回日期: 2016-05-10
网络出版日期: 2016-06-27
基金资助
国家自然科学基金(41276043,51474197);
国家海洋地质专项项目(GHZ2012006003);
863计划专题(2012AA061403-03)
Resistivity and Dielectric Constant Characteristics of Natural Gas Hydrate-Bearing Sandstone from Permafrost Regions of Qilian Mountains
Received date: 2016-04-18
Revised date: 2016-05-10
Online published: 2016-06-27
李栋梁 , 卢静生 , 梁德青 . 祁连山冻土区天然气水合物形成对岩芯电阻率及介电常数的影响[J]. 新能源进展, 2016 , 4(3) : 179 -183 . DOI: 10.3969/j.issn.2095-560X.2016.03.003
The electrical resistivity and dielectric constant of the sandstone, which came from the DK-8 well in the Qilian hydrate drilling areas, were measured during the natural gas hydrate formation process. After the hydrate generated, the electrical resistivity of sandstone samples increased dramatically. During the temperature shock, the second formation of hydrate or ice could be detected by electrical resistivity measuring. During the hydrate formation process, the dielectric constant change law of the system is complex. In the frequency range of 1 kHz ~ 100 kHz, the hydrate-bearing rock samples show disperse characteristics. The dispersion grows weaker when the frequency is over 100 kHz. The dielectric constant of electrical exploration could be applied to qualitatively analyze the hydrate bearing reservoir, but it is difficult to quantitatively analyze the saturation of hydrate in the reservoir.
Key words: gas hydrate; electrical resistivity; dielectric constant; permafrost regions; cores
[1] SLOAN JR E D. Clathrate hydrates of natural gases[M]. 2nd ed. New York: Marcel Dekker, Inc., 1998.
[2] 祝有海, 张永勤, 文怀军, 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11): 1762-1771. DOI: 10.3321/j.issn:0001-5717.2009.11.018.
[3] 郭星旺. 祁连山冻土区天然气水合物测井响应特征及评价[D]. 北京: 中国地质科学院, 2011.
[4] TZIRITA A. A study of electrical and thermal properties and their use to detectnatural gas hydrates in ocean sediments[D]. Texas: Texas A&M University, 1992.
[5] ZHOU X T, FAN S S, LIANG D Q, et al. Use of electrical resistance to detect the formation and decomposition of methane hydrate[J]. Journal of natural gas chemistry, 2007, 16(4): 399-403. DOI: 10.1016/ S1003-9953(08)60011-0.
[6] 陈玉凤, 李栋梁, 梁德青, 等. 含天然气水合物的海底沉积物的电学特性实验[J]. 地球物理学进展, 2013, 28(2): 1041-1047. DOI: 10.6038/pg20130258.
[7] 祝有海, 张永勤, 文怀军, 等. 祁连山冻土区天然气水合物及其基本特征[J]. 地球学报, 2010, 31(1): 7-16. DOI: 10.3975/cagsb.2010.01.02
[8] 王欣明, 黎荣龙. 电磁波传播测井方法的理论研究[C]//勘探地球物理北京(89)国际讨论会论文摘要集. 北京: 地球物理学会, 1989.
[9] 孙中明, 刘昌岭, 赵仕俊, 等. 时域反射技术测量THF水合物体系含水量的实验研究[J]. 海洋地质前沿, 2012, 28(5): 64-70.
[10] 胡高伟, 业渝光, 刁少波, 等. 时域反射技术测量海洋沉积物含水量的研究[J]. 现代地质, 2010, 24(3): 622-626. DOI: 10.3969/j.issn.1000-8527.2010.03.029.
[11] ZAIN Z M, YANG J H, TOHIDI B, et al. Hydrate monitoring and warning system: a new approach for reducing gas hydrate risks[C]//SPE Europec/EAGE Annual Conference. Madrid, Spain: Society of Petroleum Engineers, 2005.
[12] 卢振权, 饶竹, 祝有海, 等. 祁连山冻土区天然气水合物DK-8孔岩芯顶空气地球化学特征及其运移指示意义[J]. 地质学报, 2013, 87(8): 1167-1178. DOI: 10.3969/j.issn.0001-5717.2013.08.011.
[13] 黄犊子, 樊栓狮. 甲烷水合物在静态体系中生成反应的促进[J]. 化学通报, 2005, 68(5): 379-384. DOI: 10.3969/j.issn.0441-3776.2005.05.015.
[14] 李刚, 李小森, 唐良广, 等. 降温模式对甲烷水合物形成的影响[J]. 过程工程学报, 2007, 7(4): 723-727. DOI: 10.3321/j.issn:1009-606x.2007.04.017.
[15] 孙建业. 海洋沉积物中天然气水合物开采实验研究[D]. 青岛: 中国海洋大学, 2011.
[16] 陈玉凤, 徐宗财, 李栋梁, 等. 温度周期变化下分散型天然气水合物的沉积物电阻率测量[J]. 海洋地质前沿, 2013, 29(7): 18-24.
[17] 赵淑芳. 岩石介电常数与各种影响因素的关系[J]. 测井技术, 1982(4): 36-47.
[18] 冯启宁, 李晓明, 郑和华. 1kHz-15MHz岩石介电常数的实验研究[J]. 地球物理学报, 1995, 38(S1): 331-336.
[19] 苏庆新. 低频下岩石的电学模型和介电频散的关系[J]. 测井技术, 1999, 23(2): 127-132. DOI: 10.3969/j.issn. 1004-1338.1999.02.011.
[20] 唐炼, 韩有信, 张守谦, 等. 高频段岩石介电频散现象的实验研究[J]. 石油物探, 1995, 34(3): 109-113.
/
〈 |
|
〉 |