四种能源草中黄酮类物质的定性研究
收稿日期: 2016-04-26
修回日期: 2016-06-12
网络出版日期: 2016-06-27
基金资助
国家科技支撑计划(2013BAD22B03);
广州市科技计划项目(201508020098)
Determination of Flavonoids from Four Energy Grasses
Received date: 2016-04-26
Revised date: 2016-06-12
Online published: 2016-06-27
本文对杂交狼尾草、柳枝稷、芦竹及象草这4种能源草的整株、茎和叶中的黄酮类物质总量进行了定量分析,并利用高效液相色谱质谱联用技术对黄酮物质种类进行定性分析。对整株分析的结果表明,柳枝稷的总黄酮含量最高,达到6.84 mg当量槲皮素/g干重,比芦竹、杂交狼尾草和象草分别高出59.8%、20.1%和11.2%。能源草的不同部位黄酮分布存在差异,叶中黄酮含量是茎的2.3 ~ 3.0倍。杂交狼尾草叶中含量最高,为10.55 mg当量槲皮素/g干重。定性分析发现,4种能源草的提取物中共含有14种黄酮苷和2种黄酮醇,包括槲皮苷、异鼠李素和槲皮素。该研究结果可为能源草作为天然产物提取原料提供理论支持。
杨立贵 , 孙永明 , 孔晓英 , 李连华 , 刘姝娜 , 董鹏宇 , 袁振宏 . 四种能源草中黄酮类物质的定性研究[J]. 新能源进展, 2016 , 4(3) : 225 -231 . DOI: 10.3969/j.issn.2095-560X.2016.03.010
The total flavonoid contents in four common energy grasses (hybrid Pennisetum, switchgrass, giant reed, elephant grass) including whole strain, stems and leaves were quantified. The flavonoids were detected by LC-MS. For the whole strains, switchgrass has a flavonoids content of 6.84 mg quercetin equivalents/g dry weight, which is 59.8%, 20.1% and 11.2% higher than giant reed, hybrid Pennisetum and elephant grass. The content in leaves is 2.3 ~ 3.0 times to stems, the contents in hybrid Pennisetum leaves is 10.55 mg quercetin equivalents/g dry weight, which is the highest among all these samples. 14 flavonoid glycosides and 2 flavonols were identified in the extracts of four grasses. Quercetin, isorhamnetin and quercitrin are identified positively with standards. This research may provide a theoretical support for the value added phytochemicals extract from energy grass.
Key words: energy grass; LC-MS; flavonoid glycosides; flavonol; total flavonoid content
[1] LI L H, KONG X Y, YANG F Y, et al. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass[J]. Applied biochemistry and biotechnology, 2012, 166(5): 1183-1191. DOI: 10.1007/s12010-011-9503-9.
[2] ZHANG J Z, SONG Y L, WANG B W, et al. Biomass to bio-ethanol: the evaluation of hybrid Pennisetum used as raw material for bio-ethanol production compared with corn stalk by steam explosion joint use of mild chemicals[J]. Renewable energy, 2016, 88: 164-170. DOI: 10.1016/j.renene.2015.11.034.
[3] GE X M, BURNER D M, XU J F, et al. Bioethanol production from dedicated energy crops and residues in Arkansas, USA[J]. Biotechnology journal, 2011, 6(1): 66-73. DOI: 10.1002/biot.201000240.
[4] KARUNANITHY C, WANG Y, MUTHUKUMARAPPAN K, et al. Physiochemical characterization of briquettes made from different feedstocks[J]. Biotechnology research international, 2012, 2012: 165202. DOI: 10.1155/2012/165202.
[5] RAVINDRANATH S V, UPPUGUNDLA N, LAY J O, et al. Policosanol, α-tocopherol, and moisture content as a function of timing of harvest of Switchgrass (Panicum virgatum L.)[J]. Journal of agriculture and food chemistry, 2009, 57(9): 3500-3505. DOI: 10.1021/jf803846e.
[6] EKENSEAIR A K, DUAN L J, CARRIER D J, et al. Extraction of hyperoside and quercitrin from mimosa (Albizia julibrissin) foliage[J]. Applied biochemistry and biotechnology, 2006, 130(1/3): 382-391. DOI: 10.1385/ ABAB:130:1:382.
[7] ROSS A B, SHEPHERD M J, SCHÜPPHAUS M, et al. Alkylresorcinols in cereals and cereal products[J]. Journal of agricultural and food chemistry, 2003, 51(14): 4111-4118. DOI: 10.1021/jf0340456.
[8] GUTIÉRREZ A, DEL RI?O J C, GONZÁLEZ-VILA F J, et al. Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography[J]. Journal of chromatography A, 1998, 823(1/2): 449-455. DOI: 10.1016/S0021-9673(98)00356-2.
[9] BIESAGA M. Influence of extraction methods on stability of flavonoids[J]. Journal of chromatography A, 2011, 1218(18): 2505-2512. DOI: 10.1016/j.chroma.2011.02.059.
[10] LAU C S, CARRIER D J, BEITLE R R, et al. Identification and quantification of glycoside flavonoids in the energy crop Albizia julibrissin[J]. Bioresource technology, 2007, 98(2): 429-435. DOI: 10.1016/j.biortech. 2005.12.011.
[11] TSIMOGIANNIS, SAMIOTAKI M, PANAYOTOU G, et al. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS[J]. Molecules, 2007, 12(3): 593-606. DOI: 10.3390/12030593.
[12] FABRE N, RUSTAN I, DE HOFFMANN E, et al. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry[J]. Journal of the American society for mass spectrometry, 2001, 12(6): 707-715. DOI: 10.1016/S1044-0305(01)00226-4.
[13] UPPUGUNDLA N, ENGELBERTH A, VANDHANA RAVINDRANATH S, et al. Switchgrass water extracts: extraction, separation and biological activity of rutin and quercitrin[J]. Journal of agricultural and food chemistry, 2009, 57(17): 7763-7770. DOI: 10.1021/jf900998q.
[14] SIMIRGIOTIS M J, ADACHI S, TO S, et al. Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu)[J]. Food chemistry, 2008, 107(2): 813-819. DOI: 10.1016/j.foodchem.2007.08.086.
[15] BAJPAI P K, WARGHAT A R, DHAR P, et al. Variability and relationship of fruit color and sampling location with antioxidant capacities and bioactive content in Morus alba L. fruit from trans-Himalaya, India[J]. Lwt-food science and technology, 2014, 59(2): 981-988. DOI: 10.1016/j.lwt.2014.07.055.
[16] FAN R, YUAN F, WANG N, et al. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L.[J]. Journal of food science and technology, 2015, 52(5): 2690-2700. DOI: 10.1007/ s13197-014-1360-4.
[17] DAS N, ISLAM M E, JAHAN N, et al. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds[J]. BMC complementary and alternative medicine, 2014, 14(1): 45. DOI: 10.1186/1472-6882-14-45.
[18] MILOŠEVI? T, MILOŠEVI? N, GLIŠI? I. Apricot vegetative growth, tree mortality, productivity, fruit quality and leaf nutrient composition as affected by myrobalan rootstock and blackthorn inter-stem[J]. Erwerbs-obstbau, 2015, 57(2): 77-91. DOI: 10.1007/ s10341-014-0229-z.
[19] ABDENNACER, KARIM M, YASSINE M, et al. Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss[J]. Food chemistry, 2015, 174(1): 577-584. DOI: 10.1016/j.foodchem.2014.11.114.
[20] SULTANA B, HUSSAIN Z, ASIF M, et al. Investigation on the antioxidant activity of leaves, peels, stems bark, and kernel of mango (Mangifera indica L.)[J]. Journal of food science, 2012, 77(8): C849-C852. DOI: 10.1111/j.1750-3841.2012.02807.x.
[21] LIN L Z, HARNLY J M. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials[J]. Journal of agricultural and food chemistry, 2007, 55(4): 1084-1096. DOI: 10.1021/jf062431s.
[22] CUYCKENS F, CLAEYS M. Mass spectrometry in the structural analysis of flavonoids[J]. Journal of mass spectrometry, 2004, 39(1): 1-15. DOI: 10.1002/jms.585.
[23] DE RIJKE E, OUT P, NIESSEN W M A, et al. Analytical separation and detection methods for flavonoids[J]. Journal of chromatography A, 2006, 1112(1/2): 31-63. DOI: 10.1016/j.chroma.2006.01.019.
[24] STEVENS J F, WOLLENWEBER E, IVANCIC M, et al. Leaf surface flavonoids of Chrysothamnus[J]. Phytochemistry, 1999, 51(6): 771-780. DOI: 10.1016/S0031-9422(99)00110-7.
[25] DE RIJKE E, ZAPPEY H, ARIESE F, et al. Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments[J]. Journal of chromatography A, 2003, 984(1): 45-58. DOI: 10.1016/S0021-9673(02)01868-X.
[26] GRAYER R J, VEITCH N C, KITE G C, et al. Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum[J]. Phytochemistry, 2001, 56(6): 559-567. DOI: 10.1016/S0031-9422(00)00439-8.
[27] BOWIE J H, WHITE P Y. Electron impact studies. Part XXXIX. proximity effects in the mass spectra of aromatic carbonyl compounds containing adjacent methoxy-substituents[J]. Journal of the chemical society B-physical organic, 1969: 89-93. DOI: 10.1039/ J29690000089.
/
〈 |
|
〉 |