广州市碳排放达峰值分析
收稿日期: 2015-09-29
修回日期: 2015-12-15
网络出版日期: 2016-06-27
基金资助
中国清洁发展机制基金赠款项目
Analysis of Carbon Emission Peak in Guangzhou
Received date: 2015-09-29
Revised date: 2015-12-15
Online published: 2016-06-27
本文对城市达峰值的规律以及峰值研究方法进行了梳理,研究广州市碳排放峰值时先对广州市碳排放影响因素进行分解分析,随后基于相关规划对广州市的碳排放峰值进行了情景分析。结果表明,经济增长和人口规模是促进广州市碳排放的两个主要因素。经济增长是最重要的影响因素,未来人口增长将不会是碳排放增长的主要影响因素。产业结构、能源强度和碳排放系数都是减缓广州市碳排放的影响因素,其中能源强度的减排贡献度最大。未来广州市能源消费总量将持续增加,在高经济增速的情况下,广州市至2030年仍未达到碳排放峰值;在较低经济增速的情况下,广州市在2020年左右便可实现碳排放峰值。要实现碳排放达峰,必须引导合理的能源消费需求,加大节能力度;加快产业转型,大力发展低碳技术;大力发展天然气和新能源。
关键词:能源消费量;碳排放;峰值目标;广州市
孙 维 , 余卓君 , 廖翠萍 . 广州市碳排放达峰值分析[J]. 新能源进展, 2016 , 4(3) : 246 -252 . DOI: 10.3969/j.issn.2095-560X.2016.03.013
This paper summarizes the regular characteristics of the regional carbon emission peak and related models. Guangzhou’s carbon emissions are decomposed by Logistics Mean Division Index (LMDI) method and analyzed under different scenarios based on the relevant planning. The results show that economic growth and population are two main factors affecting the increase of carbon emission in Guangzhou. Economic growth is the most important factor, but the population will not be a major factor in future anymore. Industrial structure, energy intensity and carbon intensity are the major factors to mitigate carbon emission, in which energy intensity makes the maximum contribution. Energy consumption in Guangzhou will continue to increase in future. In the case of high economic growth, Guangzhou will not reach the peak of carbon emission by 2030; in the case of low economic growth, Guangzhou’s carbon emission will peak in 2020. The carbon emission will probably peak only when certain aspects are improved such as guiding reasonable energy needs, enhancing energy saving intensity, accelerating industrial restructuring, developing low-carbon technologies and more natural gas and new energy utilization.
Key words: energy consumption; carbon emission; peak goal; Guangzhou
[1] 中华人民共和国国家统计局. 2014广州统计年鉴[M]. 北京: 中国统计出版社, 2014.
[2] 何建坤. CO2排放峰值分析: 中国的减排目标与对策[J]. 中国人口•资源与环境, 2013, 23(12): 1-9. DOI: 10.3969/j.issn.1002-2104.2013.12.001.
[3] YORK R, ROSA E A, DIETZ T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological economics, 2003, 46(3): 351-365. DOI: 10.1016/S0921-8009(03) 00188-5.
[4] 林伯强, 蒋竺均. 中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J]. 管理世界, 2009(4): 27-36.
[5] 朱永彬, 王铮, 庞丽, 等. 基于经济模拟的中国能源消费与碳排放高峰预测[J]. 地理学报, 2009, 64(8): 935-944. DOI: 10.3321/j.issn:0375-5444.2009.08.004.
[6] 岳超, 王少鹏, 朱江玲, 等. 2050年中国碳排放量的情景预测——碳排放与社会发展Ⅳ[J]. 北京大学学报(自然科学版), 2010, 46(4): 517-524.
[7] 迟春洁, 于渤, 张弛. 基于LEAP模型的中国未来能源发展前景研究[J]. 技术经济与管理研究, 2004(5): 73-74. DOI: 10.3969/j.issn.1004-292X.2004.05.038.
[8] 周伟, 米红. 中国能源消费排放的CO2测算[J]. 中国环境科学, 2010, 30(8): 1142-1148.
[9] 姜克隽, 胡秀莲, 庄幸, 等. 中国2050年的能源需求与CO2排放情景[J]. 气候变化研究进展, 2008, 4(5): 296-302. DOI: 10.3969/j.issn.1673-1719.2008.05.008.
[10] 王铮, 朱永彬, 王丽娟, 等. 中国碳排放控制策略研究[M]. 北京: 科学出版社, 2013.
[11] 郭朝先. 中国碳排放因素分解: 基于LMDI分解技术[J]. 中国人口•资源与环境, 2010, 20(12): 4-9. DOI: 10.3969/j.issn.1002-2104.2010.12.002.
/
〈 |
|
〉 |