生物柴油同分异构替代燃料丁酸甲酯和丙酸乙酯预混燃烧对比研究
收稿日期: 2016-05-27
修回日期: 2016-07-20
网络出版日期: 2016-08-30
基金资助
国家自然科学基(51306091,51576100);
江苏省自然科学基金(BK20130758);
江苏省杰出青年基金(BK20140034);
江苏省“六大人才高峰”(2014-XNY-002)
Comparative Study on Premixed Combustion of Biodiesel Isomeric Surrogate Fuels Methyl Butanoate and Ethyl Propanoate
Received date: 2016-05-27
Revised date: 2016-07-20
Online published: 2016-08-30
在CO2/O2/Ar气氛下对生物柴油两种同分异构替代燃料丁酸甲酯和丙酸乙酯的预混燃烧(当量比为0.8)进行了对比研究,重点分析了生物柴油替代燃料的同分异构化对燃烧主要产物、稳定中间产物以及自由基的影响,同时揭示CO2对两种同分异构替代燃料燃烧的化学作用,给出了潜在典型污染物的生成趋势和规律。结果表明,CO2的加入对两种燃料中重要的烟黑前驱物C2H2和C3H3具有抑制作用。CO2的稀释和热作用对C2H2生成的抑制作用在丙酸乙酯火焰中更加显著,而对C3H3的抑制作用在丁酸甲酯火焰中更加明显,并且CO2的化学作用可进一步加强对两种火焰中C2H2和C3H3生成的抑制。同时,CO2的存在可有效降低两种燃料非常规污染物醛酮类产物的浓度,其中CH2O和CH3CHO的浓度在丙酸乙酯火焰中的减小更为显著。两种火焰中抑制CH2O生成的主要作用是CO2的稀释和热作用,而CO2的化学作用则是抑制CH3CHO生成的主导作用。由产物消耗速率分析得知,对丁酸甲酯消耗影响最大的化学反应是脱氢反应MB+H=H2+MB2J,而对丙酸乙酯消耗影响最大的则是分解反应EP=C2H5COOH+C2H4。
范静伟 , 刘 冬 . 生物柴油同分异构替代燃料丁酸甲酯和丙酸乙酯预混燃烧对比研究[J]. 新能源进展, 2016 , 4(4) : 253 -265 . DOI: 10.3969/j.issn.2095-560X.2016.04.001
A comparative study on premixed combustion (equivalence ratios are 0.8) of two biodiesel isomeric alternative fuels methyl butanoate and ethyl propanoate is investigated under the CO2/O2/Ar atmosphere. The isomerization effects of biodiesel alternative fuels on main products, intermediates and radicals are analyzed with particular emphasis on the chemical effects of CO2 addition on two alternative fuels combustion. An analysis of potential pollutants formations is carried out. The results show that, CO2 addition suppresses formations of the precursors of soot e.g. acetylene and propargyl in two flames. The dilution and thermal effects of CO2 addition are more significant on inhibiting the formation of C2H2 in ethyl propanoate flame, while in methyl butanoate are more considerable on reducing C3H3 mole fraction. Moreover, the chemical effects of CO2 addition make a further suppression on C2H2 and C3H3. Furthermore, the addition of CO2 leads to a decrease in the unconventional emissions aldehydes and ketones in the alternative fuels, especially significant for formaldehyde and acetaldehyde in ethyl propanoate flame. In the two flames, the decrease in CH2O is due to the dilution and thermal effects of CO2 addition, while the chemical effects of CO2 addition are the dominant factor on suppressing CH3CHO. Known from product consumption rate analysis, the main reaction responsible for methyl butanoate consumption is dehydrogenation reaction MB+H=H2+MB2J, while the main reaction responsible for ethyl propanoate is decomposition reaction EP=C2H5COOH+C2H4.
Key words: biodiesel surrogate fuels; isomerization; remixed flame
[1] 张百良, 宋华民, 李世欣. 生物能源发展及科技创新机遇[J]. 农业工程学报, 2008, 24(2): 285-289. DOI: 10.3321/j.issn:1002-6819.2008.02.054.
[2] 吴伟光, 仇焕广, 徐志刚. 生物柴油发展现状、影响与展望[J]. 农业工程学报, 2009, 25(3): 298-302.
[3] 冀星, 郗小林, 孔林河, 等. 生物柴油技术进展与产业前景[J]. 中国工程科学, 2002, 4(9): 86-93.
[4] 朱建良, 张冠杰. 国内外生物柴油研究生产现状及发展趋势[J]. 化工时刊, 2004, 18(1): 23-27. DOI: 10.3969/j.issn.1002-154X.2004.01.006.
[5] 张呈平, 杨建明, 吕剑. 生物柴油的合成和使用研究进展[J]. 工业催化, 2005, 13(5): 9-13. DOI: 10.3969/j.issn.1008-1143.2005.05.002.
[6] BASHA S A, GOPAL K R, JEBARAJ S. A review on biodiesel production, combustion, emissions and performance[J]. Renewable and sustainable energy reviews, 2009, 13(6-7): 1628-1634. DOI: 10.1016/j.rser. 2008.09.031.
[7] ENERGY INFORMATION ADMINISTRATION. Annual energy review, 2008[M]. Washington, DC: U. S. Department of Energy, 2009: 293.
[8] 张无敌, 尹芳, 刘宁, 等. 农村沼气产业化发展与市场分析[J]. 农业工程学报, 2006, 22(S1): 72-76.
[9] DEMIRBAS A. Importance of biodiesel as transportation fuel[J]. Energy policy, 2007, 35(9): 4661-4670. DOI: 10.1016/j.enpol.2007.04.003.
[10] 缪晓玲, 吴庆余. 微藻油脂制备生物柴油的研究[J]. 太阳能学报, 2007, 28(2): 219-222. DOI: 10.3321/j.issn:0254-0096.2007.02.021.
[11] 黄慧, 陈金珠, 吴苏琴, 等. 地沟油制取生物柴油的研究进展[J]. 江西农业大学学报, 2013, 35(6): 1290-1295. DOI: 10.3969/j.issn.1000-2286.2013.06.030.
[12] FISHER E M, PITZ W J, CURRAN H J, et al. Detailed chemical kinetic mechanisms for combustion of oxygenated fuels[J]. Proceedings of the combustion institute, 2000, 28(2): 1579-1586. DOI: 10.1016/S0082- 0784(00)80555-X.
[13] METCALFE W K, DOOLEY S, CURRAN H J, et al. Experimental and modeling study of C5H10O2 ethyl and methyl esters[J]. The journal of physical chemistry, 2007, 111(19): 4001-4014. DOI: 10.1021/jp067582c.
[14] DOOLEY S, CURRAN H J, SIMMIE J M. Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate[J]. Combustion and flame, 2008, 153(1-2): 2-32. DOI: 10.1016/ j.combustflame.2008.01.005.
[15] WALTON S M, WOOLDRIDGE M S, WESTBROOK C K. An experimental investigation of structural effects on the auto-ignition properties of two C5 esters[J]. Proceedings of the combustion institute, 2009, 32(1): 255-262. DOI: 10.1016/j.proci.2008.06.208.
[16] WALTON S M, KARWAT D M, TEINI P D, et al. Speciation studies of methyl butanoate ignition[J]. Fuel, 2011, 90(5): 1796-1804. DOI: 10.1016/j.fuel.2011.01.028.
[17] DAYMA G, GA?L S, DAGAUT P. Experimental and kinetic modeling study of the oxidation of methyl hexanoate[J]. Energy & fuels, 2008, 22(3): 1469-1479. DOI: 10.1021/ef700695j.
[18] DAYMA G, TOGBÉ C, DAGAUT P. Detailed kinetic mechanism for the oxidation of vegetable oil methyl esters: new evidence from methyl heptanoate[J]. Energy & fuels, 2009, 23(9): 4254-4268. DOI: 10.1021/ef900184y.
[19] METCALFE W K, TOGBÉ C, DAGAUT P, et al. A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation[J]. Combustion and flame, 2009, 156(1): 250-260. DOI: 10.1016/j.combustflame.2008. 09.007.
[20] FAROOQ A, DAVIDSON D F, HANSON R K, et al. A comparative study of the chemical kinetics of methyl and ethyl propanoate[J]. Fuel, 2014, 134: 26-38. DOI: 10.1016/j.fuel.2014.05.035.
[21] DIÉVART P, WON S H, GONG J, et al. A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction[J]. Proceedings of the combustion institute, 2013, 34(1): 821-829. DOI: 10.1016/j.proci.2012.06.180.
[22] DAYMA G, HALTER F, FOUCHER F, et al. Laminar burning velocities of C4-C7 ethyl esters in a spherical combustion chamber: experimental and detailed kinetic modeling[J]. Engrey & fuels, 2012, 26(11): 6669-6677. DOI: 10.1021/ef301254q.
[23] KEE R J, GRCAR J F, SMOOKE M D, et al. A Fortran program for modeling steady laminar one-dimensional premixed flames[R]. SAND858240. Albuquerque, USA: Sandia National Laboratories 1985.
[24] DU D X, AXELBAUM R L, LAW C K. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames[J]. Symposium (international) on combustion, 1991, 23(1): 1501-1507. DOI: 10.1016/ S0082-0784(06)80419-4.
[25] LIU F S, GUO H S, SMALLWOOD G J, et al. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation[J]. Combustion and flame, 2001, 125(1-2): 778-787. DOI: 10.1016/S0010-2180(00)00241-8.
[26] LIU D, SANTNER J, TOGBÉ C, et al. Flame structure and kinetic studies of carbon dioxide-diluted dimethyl ether flames at reduced and elevated pressures[J]. Combustion and flame, 2013, 160(12): 2654-2668. DOI: 10.1016/j.combustflame.2013.06.032.
[27] HAYNES B S, WAGNER H G. Soot formation[J]. Progress in energy and combustion science, 1981, 7(4): 229-273. DOI: 10.1016/0360-1285(81)90001-0.
/
〈 |
|
〉 |