1.5MW风力机整机定常及非定常数值模拟
收稿日期: 2016-06-11
修回日期: 2016-07-11
网络出版日期: 2016-08-30
基金资助
国家科技支撑计划(2015BAA06B02)
Steady and Unsteady Numerical Simulation on Flow Field of a 1.5MW Wind Turbine
Received date: 2016-06-11
Revised date: 2016-07-11
Online published: 2016-08-30
本文运用计算流体力学方法,以1.5 MW风力机为例,对风力机整机三维模型的空气动力学特性开展研究。针对三翼型风力机叶片,利用改进的Wilson方法进行气动设计,并通过寻找各截面最佳雷诺数的方法进行优化修正。建立了整机三维模型,设计流域并划分网格,定义边界及区域。最后对上述模型进行额定工况下定常与非定常数值模拟,利用模拟结果开展有关压力、失速特性等空气动力学特性的分析。结果表明:非定常模拟在风轮背面上的平均压力比定常小,使风轮前后压差变大,输出功率加大,其主要原因是叶尖出力的增加;旋转使得风力机叶片发生流体分离延迟,且产生更高的升力系数。
刘一帆 , 钟淋涓 , 杨 涛 , 黄树红 . 1.5MW风力机整机定常及非定常数值模拟[J]. 新能源进展, 2016 , 4(4) : 266 -271 . DOI: 10.3969/j.issn.2095-560X.2016.04.002
This paper conducted a research on the aerodynamic characteristics of megawatt wind turbine’s 3D model using the Computational Fluid Dynamics (CFD) method. A 1.5 MW wind turbine’s 3D model was proposed as an example. For the blades including three airfoils, the improved Wilson’s method was used for aerodynamic design. The blades were optimized by finding the best Reynolds number of various sections. By using FLUENT software, a 3D model of the whole turbine was established. Flow field was designed and divided into grids, and boundary conditions were set. By using steady and unsteady CFD methods, the model under rated wind speed condition was calculated to study its pressure, stalling characteristics and other aerodynamic characteristics. The results show that: average pressure on the back of the rotor for unsteady simulation is lower than that for steady simulation, which is caused by tip output increase and increases the pressure difference and the output power of the rotor; rotation leads to fluid separation delay on the wind blades, and produces a higher lift coefficient.
[1] VAZ J R P, PINHO J T, MESQUITA A L A. An extension of BEM method applied to horizontal-axis wind turbine design[J]. Renewable energy, 2011, 36(6): 1734-1740. DOI: 10.1016/j.renene.2010.11.018.
[2] DÍAZ-CASÁS V, BECERRA J A, LOPEZ-PEÑA F, et al. Wind turbine design through evolutionary algorithms based on surrogate CFD methods[J]. Optimization and engineering, 2013, 14(2): 305-329. DOI: 10.1007/s11081-012-9187-1.
[3] LANZAFAME R, MESSINA M. Fluid dynamics wind turbine design: critical analysis, optimization and application of BEM theory[J]. Renewable energy, 2007, 32(14): 2291-2305. DOI: 10.1016/j.renene.2006.12.010.
[4] STORK C H J, BUTTERFIELD C P, HOLLEY W, et al. Wind conditions for wind turbine design proposals for revision of the IEC 1400-1 standard[J]. Journal of wind engineering and industrial aerodynamics, 1998, 74-76: 443-454. DOI: 10.1016/S0167-6105(98)00040-3.
[5] 韩中和. 考虑风剪切的1.3 MW风力机整机三维定常流动数值研究[J]. 动力工程学报, 2011, 31(10): 779-783, 808.
[6] 李少华, 1.2 MW风力机整机流场的数值模拟[J]. 动力工程学报, 2011, 31(7): 551-556.
[7] 廖明夫, 宋文萍, 王四季, 等. 风力机设计理论与结构动力学[M]. 西安: 西北工业大学出版社, 2014.
[8] 丹麦RISØ国家实验室,挪威船级社.风力发电机组设计导则[M]. 北京: 机械工业出版社, 2011.
[9] 邓力, 李龙, 许昌, 等. 基于CFD的水平轴风力机数值模拟[J]. 电子测试, 2014(1): 42-44.
[10] 张义华. 水平轴风力机空气动力学数值模拟[D]. 重庆: 重庆大学, 2007. DOI: 10.7666/d.y1139007.
/
〈 |
|
〉 |