含水合物地层渗流特性实验研究进展及瞬态压力脉冲法适用性分析
收稿日期: 2016-05-20
修回日期: 2016-06-21
网络出版日期: 2016-08-30
基金资助
国家自然科学基金(41376078,11402131)
Advances in Experimental Investigations on Seepage Characteristics of Hydrate-bearing Sediments and Feasibility of Transient Pulse Method
Received date: 2016-05-20
Revised date: 2016-06-21
Online published: 2016-08-30
张宏源 , 刘乐乐 , 刘昌岭 , 孙建业 , 孟庆国 , 赵仕俊 . 含水合物地层渗流特性实验研究进展及瞬态压力脉冲法适用性分析[J]. 新能源进展, 2016 , 4(4) : 272 -278 . DOI: 10.3969/j.issn.2095-560X.2016.04.003
This paper summarized the advances in experimental investigations on seepage characteristics of hydrate-bearing sediments and the shortcomings of current experiments. Both the fundamental principle and the application status of the transient pulse method applied for permeability measurements were introduced, and the feasibility of the method for hydrate-bearing sediments was discussed. It is shown that the three shortcomings of the existing experimental measurement methods including hard to keep steady flow, long time consuming, and formation/dissociation of hydrate during measurement, can be overcome by using transient pulse method. The transient pulse method is of great feasibility for hydrate-bearing sediments, particularly in the South China Sea. Seepage characteristics of hydrate-bearing sediments during hydrate formation and dissociation should be experimentally studied in the future.
[1] BEAUDOIN Y C, WAITE W, BOSWELL R, et al. Frozen heat: a UNEP global outlook on methane Gas hydrates[M]. Arendal: United Nations Environment Programme, 2014.
[2] SLOAN JR E D, KOH C. Clathrate hydrates of natural gases[M]. 3rd ed. Boca Raton, FL: CRC Press, 2007.
[3] MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas-hydrates-A potential energy source for the 21st Century[J]. Journal of petroleum science and engineering, 2007, 56(1/3): 14-31. DOI: 10.1016/j.petrol.2005.10.009.
[4] HANCOCK S H, COLLETT T S, DALLIMORE S R, et al. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well[M]//DALLIMORE S R, COLLETT T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program. Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada, 2005.
[5] SCHODERBEK D, FARRELL H, HOWARD J, et al. ConocoPhillips gas hydrate production test[R]. Washington, US: ConocoPhillips Company, 2013.
[6] YAMAMOTO K, TERAO Y, FUJII T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Offshore Technology Conference 2014. Houston, Texas, USA: OTC, 2014. DOI: 10.4043/25243-MS.
[7] 陆敬安, 杨胜雄, 吴能友, 等. 南海神狐海域天然气水合物地球物理测井评价[J]. 现代地质, 2008, 22(3): 447-451. DOI: 10.3969/j.issn.1000-8527.2008.03.015.
[8] 祝有海, 张永勤, 文怀军, 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11): 1762-1771. DOI: 10.3321/j.issn:0001-5717.2009.11.018.
[9] 吴青柏, 蒋观利, 张鹏, 等. 青藏高原昆仑山垭口盆地发现天然气水合物赋存的证据[J]. 科学通报, 2015, 60(1): 68-74. DOI: 10.1360/N972014-00088.
[10] 刘乐乐, 孙建业, 刘昌岭, 等. 松散沉积物中水合物降压分解阵面演化实验及数值模拟[J]. 现代地质, 2015, 29(5): 1234-1241. DOI: 10.3969/j.issn.1000-8527.2015. 05.028.
[11] 刘乐乐, 鲁晓兵, 张旭辉. 天然气水合物分解区演化数值分析[J]. 石油学报, 2014, 35(5): 941-951. DOI: 10.7623/syxb201405015.
[12] 刘乐乐, 张旭辉, 鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746. DOI: 10.11867/j.issn.1001-8166.2012.07.0733.
[13] WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of geophysics, 2009, 47(4): RG4003. DOI: 10.1029/2008RG000279.
[14] KONNO Y, MASUDA Y, HARIGUCHI Y, et al. Key factors for depressurization-induced gas production from oceanic methane hydrates[J]. Energy & fuels, 2010, 24(3): 1736-1744. DOI: 10.1021/ef901115h.
[15] LIU L L, LU X B, ZHANG X H. A theoretical model for predicting the spatial distribution of gas hydrate dissociation under the combination of depressurization and heating without the discontinuous interface assumption[J]. Journal of petroleum science and engineering, 2015, 133: 589-601. DOI: 10.1016/j.petrol.2015.07.005.
[16] MAHABADI N, JANG J. Relative water and gas permeability for gas production from hydrate-bearing sediments[J]. Geochemistry, geophysics, geosystems, 2014, 15(6): 2346-2353. DOI: 10.1002/2014GC005331.
[17] KONNO Y, YONEDA J, EGAWA K, et al. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough[J]. Marine and petroleum geology, 2015, 66: 487-495. DOI: 10.1016/j.marpetgeo.2015.02.020.
[18] JOHNSON A, PATIL S, DANDEKAR A. Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J]. Marine and petroleum geology, 2011, 28(2): 419-426. DOI: 10.1016/j.marpetgeo.2009.10.013.
[19] MARINAKIS D, VAROTSIS N, PERISSORATIS C. Gas hydrate dissociation affecting the permeability and consolidation behaviour of deep sea host sediment[J]. Journal of natural gas science and engineering, 2015, 23: 55-62. DOI: 10.1016/j.jngse.2015.01.012.
[20] DELLI M L, GROZIC J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of petroleum science and engineering, 2014, 120: 1-9. DOI: 10.1016/j.petrol.2014.05.011.
[21] KONNO Y, JIN Y, UCHIUMI T, et al. Multiple-pressure- tapped core holder combined with X-ray computed Tomography scanning for gas-water permeability measurements of methane hydrate-bearing sediments[J]. Review of scientific instruments, 2013, 84(6): 064501. DOI: 10.1063/1.4811379.
[22] LI B, LI X S, LI G, et al. Measurements of water permeability in unconsolidated porous media with methane hydrate formation[J]. Energies, 2013, 6(7): 3622-3636.
[23] KUMAR A, MAINI B, BISHNOI P R, et al. Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media[J]. Journal of petroleum science and engineering, 2010, 70(1/2): 114-122. DOI: 10.1016/j.petrol.2009.10.005.
[24] DAIGLE H, DUGAN B. Extending NMR data for permeability estimation in fine-grained sediments[J]. Marine and petroleum geology, 2009, 26(8): 1419-1427. DOI: 10.1016/j.marpetgeo.2009.02.008.
[25] KLEINBERG R L, FLAUM C, GRIFFIN D D, et al. Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of geophysical research, 2003, 108(B10): 2508. DOI: 10.1029/2003JB002389.
[26] WANG J Q, ZHAO J F, ZHANG Y, et al. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT[J]. Fuel, 2016, 163: 34-40. DOI: 10.1016/j.fuel. 2015.09.044.
[27] JANG J, SANTAMARINA J C. Recoverable gas from hydrate-bearing sediments: pore network model simulation and macroscale analyses[J]. Journal of geophysical research, 2011, 116(B8): B08202. DOI: 10.1029/2010JB007841.
[28] LIANG H F, SONG Y C, LIU Y, et al. Study of the permeability characteristics of porous media with methane hydrate by pore network model[J]. Journal of natural gas chemistry, 2010, 19(3): 255-260. DOI: 10.1016/S1003-9953(09)60078-5.
[29] SAKAMOTO Y, KOMAI T, KAWAMURA T, et al. Modification of permeability model and history matching of laboratory-scale experiment for dissociation process of methane hydrate: part 2-Numerical study for estimation of permeability in methane hydrate reservoir[J]. International journal of offshore and polar engineering, 2007, 17(1): 57-66.
[30] TSIMPANOGIANNIS I N, LICHTNER P C. Pore-network study of methane hydrate dissociation[J]. Physical review E, 2006, 74(5): 056303. DOI: 10.1103/PhysRevE.74.056303.
[31] 宋永臣, 黄兴, 刘瑜, 等. 含甲烷水合物多孔介质渗透性的实验研究[J]. 热科学与技术, 2010, 9(1): 51-57. DOI: 10.3969/j.issn.1671-8097.2010.01.009.
[32] 刘瑜, 陈伟, 宋永臣, 等. 含甲烷水合物沉积层渗透率特性实验与理论研究[J]. 大连理工大学学报, 2011, 51(6): 793-797. DOI: 10.7511/dllgxb201106003.
[33] 翟诚, 孙可明, 辛利伟, 等. 含甲烷水合物砂土沉积层渗透性试验研究[J]. 武汉理工大学学报, 2015, 37(8): 78-82. DOI: 10.3963/j.issn.1671-4431.2015.08.015.
[34] GHIASSIAN H, GROZIC J L H. Strength behavior of methane hydrate bearing sand in undrained triaxial testing[J]. Marine and petroleum geology, 2013, 43: 310-319. DOI: 10.1016/j.marpetgeo.2013.01.007.
[35] 刘昌岭, 业渝光, 孟庆国, 等. 南海神狐海域天然气水合物样品的基本特征[J]. 热带海洋学报, 2012, 31(5): 1-5. DOI: 10.11978/j.issn.1009-5470.2012.05.001.
[36] 陆红锋, 陈弘, 陈芳, 等. 南海神狐海域天然气水合物钻孔沉积物矿物学特征[J]. 南海地质研究, 2009: 28-39.
[37] 吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007, 27(9): 1-6. DOI: 10.3321/j.issn:1000-0976.2007.09.001.
[38] ZHANG H Q, YANG S X, WU N Y, et al. China’s first gas hydrate expedition successful[J]. Fire in the Ice, 2007, Spring/Summer: 1.
[39] WU N Y, ZHANG H Q, SU X, et al. High concentrations of hydrate in disseminated forms found in very fine-grained sediments of Shenhu Area, South China Sea[J]. Terra Nostra, 2007, 1-2: 236-237.
[40] YANG S X, ZHANG M, LIANG J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(2):1-5.
[41] 陈芳, 周洋, 苏新, 等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质, 2011, 31(5): 95-100.
[42] LIU C L, YE Y G, MENG Q G, et al. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea[J]. Marine geology, 2012, 307-310: 22-27. DOI: 10.1016/j.margeo.2012.03.004.
[43] BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure[J]. Journal of geophysical research, 1968, 73(6): 2225-2236. DOI: 10.1029/JB073i006p02225.
[44] HSIEH P A, TRACY J V, NEUZIL C E, et al. A transient laboratory method for determining the hydraulic properties of ‘tight’ rocks-I. Theory[J]. International journal of rock mechanics and mining sciences & Geomechanics Abstracts, 1981, 18(3): 245-252. DOI: 10.1016/0148-9062(81)90979-7.
[45] NEUZIL C E, COOLEY C, SILLIMAN S E, et al. A transient laboratory method for determining the hydraulic properties of ‘tight’ rocks-II. Application[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1981, 18(3): 253-258. DOI: 10.1016/0148-9062(81)90980-3.
[46] LIN W N. Parametric analyses of the transient method of
measuring permeability[J]. Journal of geophysical research, 1982, 87(B2): 1055-1060. DOI: 10.1029/ JB087iB02p01055.
[47] ZHANG M, TAKAHASHI M, MORIN R H, et al. Evaluation and application of the transient-pulse technique for determining hydraulic properties of low-permeability rocks-part 1: theoretical evaluation[J]. Geotechnical testing journal, 2000, 23(1): 83-90. DOI: 10.1520/GTJ11126J. ISSN 0149-6115.
[48] ZHANG M, TAKAHASHI M, MORIN R H, et al. Evaluation and application of the transient-pulse technique for determining hydraulic properties of low-permeability rocks-part 2: experimental application[J]. Geotechnical testing journal, 2000, 23(1): 91-99. DOI: 10.1520/ GTJ11127J.
[49] ZHANG M. A new coupled shear and permeability test method for evaluating engineered barriers in low-level radioactive waste disposal facilities[D]. Fukuoka, Japan: Kyushu University, 1996.
[50] 胡少华, 陈益峰, 周创兵. 北山花岗岩渗透特性试验研究与细观力学分析[J]. 岩石力学与工程学报, 2014, 33(11): 2200-2209. DOI: 10.13722/j.cnki.jrme.2014. 11.005.
[51] BLUNT M, FAYERS F J, FRANKLIN JR M O. Carbon dioxide in enhanced oil recovery[J]. Energy conversion and management, 1993, 34(9/10/11): 1197-1204. DOI: 10.1016/0196-8904(93)90069-M.
[52] NOBAKHT M, CLARKSON C R. Analysis of production data in shale gas reservoirs: rigorous corrections for fluid and flow properties[J]. Journal of natural gas science and engineering, 2012, 8: 85-98. DOI: 10.1016/j.jngse.2012.02.002.
[53] 张开洪, 陈一健, 徐海莹. 测量低渗岩心液体渗透率的压力脉冲技术[J]. 石油仪器, 1998, 12(3): 12-14.
[54] 李小春, 高桥学, 吴智深, 等. 瞬态压力脉冲法及其在岩石三轴试验中的应用[J]. 岩石力学与工程学报, 2001, 20(S): 1725-1733. DOI: 10.3321/j.issn:1000-6915. 2001.z1.025.
[55] ODA M, TAKEMURA T, AOKI T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of materials, 2002, 34(6): 313-331. DOI: 10.1016/S0167-6636(02)00115-1.
[56] STORMONT J C, DAEMEN J J K. Laboratory study of gas permeability changes in rock salt during deformation[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1992, 29(4): 325-342. DOI: 10.1016/0148-9062(92)90510-7.
[57] 高诚, 胥蕊娜, 薛华庆, 等. 基于致密岩心的渗透率测量模型的应用研究[J]. 工程热物理学报, 2013, 34(9): 1695-1698.
[58] 李小春, 王颖, 魏宁. 变容压力脉冲渗透系数测量方法研究[J]. 岩石力学与工程学报, 2008, 27(12): 2482-2487. DOI: 10.3321/j.issn:1000-6915.2008.12.013.
/
〈 |
|
〉 |