欢迎访问《新能源进展》官方网站!今天是
论文

圆柱形锂离子电池热管理实验研究

展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
李志斌(1990-),男,硕士研究生,主要从事锂离子电池热管理研究。

收稿日期: 2016-06-14

  修回日期: 2016-06-28

  网络出版日期: 2016-08-30

基金资助

广东省自然科学基金–重大基础研究培育(2015A030308019);
广东省新能源和可再生能源研究开发与应用重点实验室基金(Y607jg1001);
广州市科技计划项目(2014J4100217)

Experimental Investigation on Thermal Management of Cylindrical Lithium-Ion Battery

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; 
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-06-14

  Revised date: 2016-06-28

  Online published: 2016-08-30

摘要

保持合适的运行温度是锂离子电池高效、安全、长寿命的保证,因而对其进行有效的热管理是非常有必要的。本文针对圆柱形锂离子电池,设计了嵌套电池表面的方形金属外壳,以强化电池散热和单体电池间传热。对比自然对流条件下电池单体加壳和无壳时不同放电倍率的温升情况、多个电池并联的温升情况,以及不同通风功率下多个电池并联时嵌套不同外壳的温升情况,发现加壳可以有效促进电池(组)散热。另外,设计了电池组内不同单体电池出现放电不均衡情况,以检验嵌套外壳对减小电池组内单体电池间温差的效果,结果表明,自然对流条件下,加壳后单体电池间最大温差可以降低10℃以上。

本文引用格式

李志斌,岑继文彭 鹏,蒋方明 . 圆柱形锂离子电池热管理实验研究[J]. 新能源进展, 2016 , 4(4) : 305 -311 . DOI: 10.3969/j.issn.2095-560X.2016.04.007

Abstract

It is necessary to implement effective thermal management strategies to keep the Li-ion batteries work at a desirable temperature or within a temperature range, and thus to guarantee its high efficiency, reliable safety and long lifetime. In this paper, a prismatic metal shell was designed for the cylindrical Li-ion batteries to enhance the heat dissipation and facilitate the heat exchange between neighboring batteries. Experiments were carried out to compare the temperature rise of a single battery or a small group of parallel-connected batteries with or without metal shells assembled under natural or forced air convective cooling conditions at various discharge rates. It was found that heat dissipation of the shelled battery (or small group) was improved greatly. In addition, batteries in a small parallel-connected group were designed to discharge at different rates to record the temperature variation. The result showed that the maximum temperature difference between shelled single cells could be reduced by more than 10oC under natural convection cooling condition.

参考文献

[1] LINDEN D, REDDY T B. Handbook of batteries[M]. 3rd ed. New York: McGraw-Hill, 2001.

[2] RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and sustainable energy reviews, 2011, 15(9): 4554-4571. DOI: 10.1016/j.rser.2011.07.096.

[3] TODD M. BANDHAUER, SRINIVAS GARIMELLA, THOMAS F. FULLER. A critical review of thermal issues in lithium-ion batteries[J]. J. Electrochem. Soc, 2011, 158(3): 1-25. doi:10.1149/1.3515880. http://jes.ecsdl.org/content/158/3/R1

[4] WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of power sources,2011,196(8):3942-3948.DOI:10.1016/j.jpowsour.2010.11.134.

[5] SARRE G, BLANCHARD P, BROUSSELY M. Aging of lithium-ion batteries[J]. Journal of power sources, 2004,

127(1/2): 65-71. DOI: 10.1016/j.jpowsour.2003.09.008.

[6] PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of power sources, 2002, 110(2): 377-382. DOI: 10.1016/S0378-7753(02)00200-8.

[7] BITSCHE O, GUTMANN G. Systems for hybrid cars[J]. Journal of power sources, 2004, 127(1/2): 8-15. DOI: 10.1016/j.jpowsour.2003.09.003.

[8] KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation[J]. Journal of power sources, 2005, 142(1/2): 345-353. DOI: 10.1016/j.jpowsour.2004.09.033.

[9] SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution[J]. Journal of power sources, 2008, 182(2): 630-638. DOI: 10.1016/j.jpowsour.2008.03.082.

[10] 彭影, 黄瑞, 俞小莉, 等. 电动汽车锂离子动力电池冷却方案的对比研究[J]. 机电工程, 2015, 32(4): 537-543. DOI: 10.3969/j.issn.1001-4551.2015.04.020.

[11] MILLS A, AL-HALLAJ S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of power sources, 2005, 141(2): 307-315. DOI: 10.1016/j.jpowsour.2004.09.025.

[12] LI W Q, QU Z G, He Y L, et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of power sources, 2014, 255: 9-15. DOI: 10.1016/j.jpowsour.2014. 01.006.

[13] LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied energy, 2015, 148: 403-409. DOI: 10.1016/j.apenergy.2015.03.080.

[14] XU X M, HE R. Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renewable and sustainable energy reviews, 2014, 29: 310-315. DOI: 10.1016/j.rser.2013.08.057.

[15] LI X S, HE F, MA L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J]. Journal of power sources, 2013, 238: 395-402. DOI: 10.1016/ j.jpowsour.2013.04.073.

[16] WANG T, Tseng K J, ZHAO J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied energy, 2014, 134: 229-238. DOI: 10.1016/j.apenergy.2014.08.013.

[17] WANG T, TSENG K J, ZHAO J Y. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied thermal engineering, 2015, 90: 521-529. DOI: 10.1016/j.applthermaleng.2015.07.033.

[18] YANG N X, ZHANG X W, LI G J, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: a comparative analysis between aligned and staggered cell arrangements[J]. Applied thermal engineering, 2015, 80: 55-65. DOI: 10.1016/j.applthermaleng. 2015.01.049.

[19] HE F, MA L. Thermal management of batteries employing active temperature control and reciprocating cooling flow[J]. International journal of heat and mass transfer, 2015, 83: 164-172. DOI: 10.1016/j.ijheatmasstransfer. 2014.11.079.

[20] ZHAO J T, RAO Z H, HUO Y T, et al. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles[J]. Applied thermal engineering, 2015, 85: 33-43. DOI: 10.1016/j.applthermaleng.2015.04.012.

[21] PARK H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of power sources, 2013, 239: 30-36. DOI: 10.1016/ j.jpowsour.2013.03.102.

[22] WU M S, LIU K H, WANG Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of power sources, 2002, 109(1): 160-166. DOI: 10.1016/S0378-7753(02)00048-4.

[23] 张志杰, 李茂德. 锂离子电池内阻变化对电池温升影响分析[J]. 电源技术, 2010, 34(2): 128-130. DOI: 10.3969/j.issn.1002-087X.2010.02.011.

文章导航

/