欢迎访问《新能源进展》官方网站!今天是
论文

PEMFC碳纸气体扩散层内气液两相流格子Boltzmann模拟

  • 吴 伟 ,
  • 陈 旺 ,
  • 蒋方明
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
吴 伟(1987-)男,博士研究生,主要从事电化学能源系统的数值模拟研究。

收稿日期: 2016-03-10

  修回日期: 2016-07-22

  网络出版日期: 2016-10-28

基金资助

广东省自然科学基金(2015A030308019);
广州市科技计划项目(2014J4100217)

Liquid-Gas Flow in Carbon-Paper Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell: A Lattice Boltzmann Simulation Study

  • WU Wei ,
  • CHEN Wang ,
  • JIANG Fang-ming
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-03-10

  Revised date: 2016-07-22

  Online published: 2016-10-28

摘要

为了提高质子交换膜燃料电池(PEMFC)水管理,本文借助多相流格子Boltzmann模型(LBM)模拟分析了PEMFC碳纸气体扩散层(GDL)内的气液两相输运过程,主要研究了GDL疏水性对气液两相流的影响。结果表明:液态水流路径不仅受到GDL结构形态的影响,而且受到材料疏水性影响。液态水在疏水性弱的GDL中不仅容易沁入,而且容易在孔隙中达到饱和;相反,在疏水性较强的GDL中,液态水很难突破沁入小尺寸孔隙,而从孔径较大的孔隙流通,从而形成毛细力主导的指进流动。

本文引用格式

吴 伟 , 陈 旺 , 蒋方明 . PEMFC碳纸气体扩散层内气液两相流格子Boltzmann模拟[J]. 新能源进展, 2016 , 4(5) : 351 -357 . DOI: 10.3969/j.issn.2095-560X.2016.05.003

Abstract

To improve the water management of proton exchange membrane fuel cell (PEMFC), the two-phase (liquid water and air) transport in the carbon-paper gas diffusion layer (GDL) of PEMFC was simulated and analyzed by using the pseudopotential multiphase lattice Boltzmann model (LBM), which mainly focused on the effects of GDL hydrophobicity on the two-phase transport. The results encompass: for a GDL of lower hydrophobicity, liquid water is easier to seep into the pore space, and thus reach a higher liquid saturation level in the GDL; while for a GDL of higher hydrophobicity, the liquid water can hardly enter the pores of smaller size, but flows along the pathways connecting the pores of relatively larger size, leading to the formation of a capillary-fingering flow.

参考文献

[1] WANG C Y. Fundamental models for fuel cell engineering[J]. Chemical reviews, 2004, 104(10): 4727-4766. DOI: 10.1021/cr020718s.

[2] JIANG F M, WANG C Y. Numerical modeling of liquid water motion in a polymer electrolyte fuel cell[J]. International journal of hydrogen energy, 2014, 39(2): 942-950. DOI: 10.1016/j.ijhydene.2013.10.113.

[3] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics, 1981, 39(1): 201-225. DOI: 10.1016/0021-9991(81)90145-5.

[4] ZHU X, SUI P C, DJILALI N. Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel[J]. Journal of power sources, 2008, 181(1): 101-115. DOI: 10.1016/j.jpowsour.2008.03.005.

[5] CHEN S Q, LIAO B. A coupled level set and volume of fluid method for tracking moving interface in multiphase flow[J]. Journal of ship mechanics, 2012, 16(3): 203-217. DOI: 10.3969/j.issn.1007-7294.2012.03.001.

[6] MUKHERJEE P P, KANG Q J, WANG C Y. Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells?progress and perspective[J]. Energy & environmental science, 2010, 4(2): 346-369. DOI: 10.1039/B926077C.

[7] HAO L, CHENG P. Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell[J]. Journal of power sources, 2010, 195(12): 3870-3881. DOI: 10.1016/ j.jpowsour.2009.11.125.

[8] ZHOU P, WU C W. Liquid water transport mechanism in the gas diffusion layer[J]. Journal of power sources, 2010, 195(5): 1408-1415. DOI: 10.1016/j.jpowsour.2009. 09.019.

[9] MOLAEIMANESH G, AKBARI M H. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method[J]. Korean journal of chemical engineering, 2014, 31(4): 598-610. DOI: 10.1007/s11814-013-0282-6.

[10] CHEN L, LUAN H B, HE Y L, et al. Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method[J]. Russian journal of electrochemistry, 2012, 48(7): 712-726. DOI: 10.1134/S1023193512070026.

[11] PARK J, LI X. Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method[J]. Journal of power sources, 2008, 178(1): 248-257. DOI: 10.1016/j.jpowsour.2007.12.008.

[12] LUO L S. Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases[J]. Physical review e, 2000, 62(4): 4982-4996. DOI: 10.1103/ PhysRevE.62.4982.

[13] SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical review e, 1993, 47(3): 1815-1819. DOI: 10.1103/ PhysRevE.47.1815.

[14] SHAN X W, CHEN H D. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical review e, 1994, 49(4): 2941-2948. DOI: 10.1103/PhysRevE.49.2941.

[15] SHAN X W, DOOLEN G. Multicomponent lattice- Boltzmann model with interparticle interaction[J]. Journal of statistical physics, 1995, 81(1/2): 379-393. DOI: 10.1007/BF02179985.

[16] SHAN X W, DOOLEN G. Diffusion in a multicomponent lattice Boltzmann equation model[J]. Physical review e, 1996, 54(4): 3614-3620. DOI: 10.1103/PhysRevE.54.3614.

[17] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical review letters, 1995, 75(5): 830-833. DOI: 10.1103/ PhysRevLett.75.830.

[18] SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical review e, 1996, 54(5): 5041-5052. DOI: 10.1103/PhysRevE.54.5041.

[19] ZHENG H W, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of computational physics, 2006, 218(1): 363-371. DOI: 10.1016/j.jcp.2006.02.015.

[20] INAMURO T, OGATA T, TAJIMA S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. Journal of computational physics, 2004, 198(2): 628-644. DOI: 10.1016/j.jcp.2004.01.019.

[21] HE X Y, SHAN X W, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review e, 1998, 57(1): R13-R16. DOI: 10.1103/ PhysRevE.57.R13.

[22] FRISCH U, D’HUMIÈRES, HASSLACHER B, et al. Lattice gas hydrodynamics in two and three dimensions[J]. Complex Systems. 1987, 1(4): 649-707.

[23] FRISCH U, HASSLACHER B, POMEAU Y. Lattice-gas automata for the Navier-Stokes equation[J]. Physical review letters, 1986, 56(14): 1505-1508. DOI: 10.1103/PhysRevLett.56.1505.

[24] D'HUMIÈRES D, LALLEMAND P, FRISCH U. Lattice gas models for 3D hydrodynamics[J]. Europhysics letters, 1986, 2(4): 291-297. DOI: 10.1209/0295-5075/ 2/4/006.

[25] SCHULZ V P, BECKER J, WIEGMANN A, et al. Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach[J]. Journal of the electrochemical society, 2007, 154(4): B419-B426. DOI: 10.1149/1.2472547.

[26] SCHULZ V P, MUKHERJEE P P, BECKER J, et al. Numerical evaluation of effective gas diffusivity- saturation dependence of uncompressed and compressed gas diffusion media in PEFCs[J]. ECS transactions, 2006, 3(1): 1069-1075. DOI: 10.1149/1.2356226.

[27] WU W, JIANG F M. Microstructure reconstruction and characterization of PEMFC electrodes[J]. International journal of hydrogen energy, 2014, 39(28): 15894-15906. DOI: 10.1016/j.ijhydene.2014.03.074.

文章导航

/