欢迎访问《新能源进展》官方网站!今天是
论文

基于密度泛函理论的CuO氧载体释氧机理研究

  • 冯晓鸣 ,
  • 冯永新 ,
  • 刘亚明 ,
  • 李方勇
展开
  • 广东电网有限责任公司电力科学研究院,广州 510080
冯晓鸣(1985-),男,硕士,工程师,主要从事烟气脱硫脱硝的研究。

收稿日期: 2016-06-08

  修回日期: 2016-08-17

  网络出版日期: 2016-10-28

Oxygen Release Mechanisms of Cu-Based Oxygen Carriers Based on Density Functional Theory Calculations

  • FENG Xiao-ming ,
  • FENG Yong-xin ,
  • LIU Ya-ming ,
  • LI Fang-yong
Expand
  • Electric Power Research Institute of Guangdong Power Grid Company, Guangzhou 510080, China

Received date: 2016-06-08

  Revised date: 2016-08-17

  Online published: 2016-10-28

摘要

化学链氧解耦(CLOU)是基于化学链燃烧(CLC)技术的一种新型燃烧方式,具有CO2内分离的优良特性。具有良好吸氧释氧性能的氧载体是CLOU技术的关键,其宏观层面的反应性决定于其微观层面的晶格氧传输机理,但目前对这种微观机理的研究非常缺乏。本文采用量子化学计算方法——密度泛函理论(DFT)研究CuO氧载体释氧的微观机理,构建了CuO团簇及CuO平板模型,模拟团簇及表面的释氧过程。CuO平板模型释氧包括O原子在CuO内部扩散、表面O2的形成及释放过程。结果表明:CuO(111)表面释氧过程的最高能量势垒为3.16 eV,与实验值3.39 eV接近,低于CuO团簇模型的释氧能量势垒3.51 eV;此外,O原子在CuO(111)内部的扩散势垒仅为0.87 eV,说明CuO(111) 释氧的限制步骤是表面O2的形成过程。

本文引用格式

冯晓鸣 , 冯永新 , 刘亚明 , 李方勇 . 基于密度泛函理论的CuO氧载体释氧机理研究[J]. 新能源进展, 2016 , 4(5) : 393 -398 . DOI: 10.3969/j.issn.2095-560X.2016.05.009

Abstract

Chemical-looping with oxygen uncoupling (CLOU) is a new combustion method based on chemical-looping combustion technology, which allows intrinsic separation of pure CO2 from hydrocarbon combustion. The key point of CLOU is finding an ideal oxygen carrier that has good oxygen adsorption and releasing characters. The reactivity of oxygen carriers in macro-level is determined by the mechanism of microscopic lattice oxygen transportation, but few attentions have been paid on the subject currently. This article used density functional theory (DFT) to study the oxygen release mechanism of CuO carriers, the CuO clusters and slab models were built to simulate the process of cluster and surface oxygen release. CuO slab model’s oxygen release process includes inward oxygen atom diffusion, the formation of O2 molecule in surface and the release of O2 molecule. The results indicate that the highest energy barrier during the CuO(111) surface oxygen release is 3.16 eV, which is close to the experiment value 3.39 eV, but lower than that of CuO cluster model. And besides, the energy barrier of oxygen atom diffusion inside the CuO(111) is just 0.87 eV, indicating that the surface oxygen molecules’ formation process is the rate-limit step of CuO(111) oxygen release.

参考文献

[1] MATTISSON T, LYNGFELT A, LEION H. Chemical-looping with oxygen uncoupling for combustion of solid fuels[J]. International journal of greenhouse gas control, 2009, 3(1): 11-19. DOI: 10.1016/j.ijggc.2008.06.002.

[2] MATTISSON T, LEION H, LYNGFELT A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke[J]. Fuel, 2009, 88(4): 683-690. DOI:10.1016/j.fuel.2008.09.016.

[3] ADÁNEZ-RUBIO I, ABAD A, GAYÁN P, et al. Performance of CLOU process in the combustion of different types of coal with CO2 capture[J]. International journal of greenhouse gas control, 2013, 12: 430-440. DOI: 10.1016/j.ijggc.2012.11.025.

[4] SIRIWARDANE R, TIAN H J, MILLER D, et al. Evaluation of reaction mechanism of coal–metal oxide interactions in chemical-looping combustion[J]. Combustion and flame, 2010, 157(11): 2198-2208. DOI:10.1016/j.combustflame.2010.06.008.

[5] DONG C Q, LIU X L, QIN W, et al. Deep reduction behavior of iron oxide and its effect on direct CO oxidation[J]. Applied surface science, 2012, 258(7): 2562-2569. DOI:10.1016/j.apsusc.2011.10.092.

[6] TAN Q L, QIN W, CHEN Q L, et al. Synergetic effect of ZrO2 on the oxidation-reduction reaction of Fe2O3 during chemical looping combustion[J]. Applied surface science, 2012, 258(24): 10022-10027. DOI: 10.1016/j.apsusc.2012.06.067.

[7] LI F X, LUO S W, SUN Z C, et al. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations[J]. Energy & environmental science, 2011, 4(9): 3661-3667. DOI: 10.1039/C1EE01325D.

[8] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18): 3865-3868. DOI: 10.1103/PhysRevLett.77.3865.

[9] Delley B. Analytic energy derivatives in the numerical local-density-functional approach[J]. The journal of chemical physics, 1991, 94(11): 7245-7250. DOI: 10.1063/1.460208.

[10] 张健. 镁及其合金氢化物吸放氢性能及电子机制研究[D]. 长沙: 湖南大学, 2009.

[11] Sahir A H, Sohn H Y, Leion H, et al. Rate analysis of Chemical-Looping with Oxygen Uncoupling (CLOU) for solid fuels[J]. Energy & fuels, 2012, 26(7): 4395-4404. DOI: 10.1021/ef300452p.

文章导航

/